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Abstract

We present a measurement of the ratio of charged to neutral B lifetimes
using roughly 1fb−1 of data accumulated by the high impact parameter
selection based hadronic B trigger at CDF. The problem of fitting decay
time distributions is solved in a novel Monte-Carlo independent way by
analytically calculating acceptances for each event from the decay geom-
etry and known trigger selection criteria. We measure a B± lifetime of
488.5 ± 6.2 ± 5.7 µm in the decay mode B± → D0π± with D0 → K∓π±

and a B0 lifetime of 454.3 ± 6.4 ± 5.9 µm in the decay B0 → D∓π±,
with D0 → K∓π±π± .

The calculated ratio of charged to neutral B lifetimes is 1.075 ± 0.020
± 0.007 and is consistent with the PDG value of 1.071 ± 0.009. All
uncertainties quoted from our analysis are statistical and systematic re-
spectively, the PDG uncertainty combines the two categories.

This measurement is presented as a demonstration that we can pursue
lifetime measurements in other B hadron decay modes selected by the
hadronic B trigger at CDF.



1 Introduction

CDF is the only running experiment to be accumulating a high-statistics sample
of hadronic B decays across the full spectrum of B hadrons. This note is con-
cerned with using these data from CDF’s hadronic trigger sample, for lifetime
measurements.

B-hadron lifetimes, being parameters of fundamental importance in their own
right, gain specific significance due to the precise predictions of Heavy Quark
Expansion (HQE) [1], [2]. Precision lifetime measurements provide a testing
ground for this theoretical tool that is frequently relied upon for relating exper-
imental observables to parameters of the CKM matrix. While precise measure-
ments exist for the types of B-hadrons produced at the B-factories, the accuracy
for Bs and Λb lags behind the precision of the HQE calculations.

The relative width difference between the long and short lived CP eigenstate
of the B0

s − B̄0
s system is predicted to be ∆Γs

Γs
∼ O(10%). Combined with a

measurement of the mass difference between those two states, this parameter
could be sensitive to new physics. The lifetime difference can be extracted
by measuring the Bs lifetime in decays to pure CP eigenstates, like the fully
hadronic decays B0

s → DsDs [3] and B0
s → K+K−, which are both CP even,

and compare that with the lifetime measured in flavour specific decays like
B0

s → Dsπ. Until 2007, significant numbers of B0
s → DsDs, B0

s → K+K− and
B0

s → Dsπ decays will only be available in the CDF hadronic B sample.

The hadronic B trigger which is so crucial for obtaining these data, biases B
lifetime distribution by triggering on the impact parameter of tracks in the
event. Currently, at CDF, this effect is taken into account by using a Monte
Carlo simulation to calculate an efficiency function.

In this note, we present a Monte Carlo-independent method to correct for this
lifetime bias. It only uses information from the measured data on which the
lifetime fit is performed, only, to correct for the lifetime bias on an event-by-
event basis. This eliminates some systematic problems, maximizes the use of
information, and is robust against several effects that could bias the SVT ac-
ceptance.

2 The Basic idea

Taking a given event and keeping every kinematic aspect of it fixed, except for
the decay time of the primary particle, an upper and a lower impact parameter
cut directly translate into cuts on the decay-length and hence on the lifetime
of decaying particle, as decay-length and hence on the lifetime of decaying par-
ticle, as illustrated for the case of a two-body decay and an impact parameter
cut on only one track, in figure 1. A more realistic scenario is given in figure
2. The figure illustrates that, by sliding a decay tree along the direction of the
B. The impact parameters correspond to the distance between the prim. vertex
and the point where the backwards extensions of the tracks hit the dashed lines
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Figure 1: Given the 3-momenta of all particles in the decay, the cut on the
Impact parameter of the decay products translates directly into a cut on the
lifetime of the primary particle. For clarity, the figure only illustrates the effect
of an impact parameter cut on one of the decay products (the one going straight
upwards).
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Prim Vtx

Decay Vtx

perpendicular to them. Where an individual track passs the IP requirements,
the corresponding perpendicular dashed line is solid (in same colour as the cor-
responding track). Whenever 2 tracks pass the IP requirements, the acceptance
as a function of time (plotted at the bottom) is set to one, otherwise zero. The
hadron trigger at CDF also requires that a track pair pass a minimum Lxy cut,
where the Lxy is calculated from the impact parameters. This is not illustrated
here, but accounted for in the method.

The clue is that none of those kinematics needed to translate from an impact
parameter cut to a cut (or cuts) on the decay time, have themselves any depen-
dence on the life time of the primary particle.

3 The signal Probability Density Function (PDF)
ignoring measurement errors and other detec-
tor effects.

We can write the probability to find an event with decay time t as the product
of the probability to find t given that t is must be between tmin and tmax and
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Figure 2: Given the 3-momenta of all particles in the decay, and the decaylengths
of particles down the decay chain (here a D0), the requirements of the hadronic
trigger that two particles pass the IP cut translates into an acceptance of one
or more intervals.
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Illustration of the link between impact pa-
rameter requirements and cuts on the de-
cay time. Whenever 2 tracks pass the IP
requirements, the acceptance is set to one,
otherwise zero. The hadron trigger at CDF
also requires that a track pair pass a mini-
mum Lxy cut, where the Lxy is calculated
from the impact parameters. This is not
illustrated here, but accounted for in the
method.
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the probability that t is constrained to lie within those limits:

P(t) = P(t|t ∈ [tmin, tmax]) · P(tmin, tmax)

=
1
τ e

−t
τ

tmax∫
tmin

1
τ e

−t′
τ dt′

· P(tmin, tmax)

=
1
τ e

−t
τ

e
−tmin

τ − e
−tmax

τ

· P(tmin, tmax) (1)

For a series of measurements, the probabilities for each measured time ti can
be multiplied to give the likelihood for the mean decay time τ . The limits
tmin i and tmax i can be calculated easily from the kinematics of each decay. In
general it will be difficult to calculate P(tmin i, tmax i). However, P(tmin i, tmax i)
depends only on the impact parameter cut, and the kinematics of the decay –
the momenta of the particles, and possibly the decaylengths of some long-lived
particles within the decay chain, like the Ds in Bs → Ds

∓π± – but not on
the life time of the primary itself. So in the log-likelihood, the sum over the
log (P(tmin i, tmax i)) is simply a constant that can be ignored. The total log-
likelihood function for a set of N “ideal” decays (no measurement uncertainties,
background, etc) is given by:

logL = −N log (τ)

−
N∑

i=1

(
ti
τ

+ log
(
e−tmin i/τ − e−tmax i/τ

))
(2)

where the index i labels the event, each of which has its measured decay time
ti and minimum and maximum decay times tmin i and tmax i.

Note that the only difference to the likelihood function without an impact pa-
rameter cut is the term:

logLip = −
N∑

i=1

log
(
e−tmin i/τ − e−tmax i/τ

)
(3)

The upper lifetime cut has some dramatic effect on the precision with which
the lifetime can be measured. Finding an event with lifetime t contains less
information, if already restricted the range of possible values for t due to lifetime
cuts. The effect is quite significant. For example, an upper lifetime cut at twice
the B lifetime looses only 14% of events. However, the statistical error of the
measurement is increase by a factor of 2, equivalent to a signal loss of 75%. This
is discussed in more detail elsewhere [4].

For more complicated decay geometries, the impact parameter cuts on the decay
products can translate into a series of disjoint time-intervals which changes the
correction term to:
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logLip = −
N∑

i=1

log

 ni∑
j=1

e−
tmin ij

τ − e−
tmax ij

τ

 (4)

where i labels the events and j labels the allowed time-intervals for each event.
The likelihood function in equation 2 is derived for the ideal case that we are
dealing with an exact time measurement and an exact impact parameter cut.
Any real measurement will have an uncertainty on both.

4 The signal PDF for an “offline trigger”, with
measurement errors

As an intermediate step, to illustrate the concepts, assume that the impact
parameter cuts are applied to the offline data, only (rather than the SVT-
measured quantities). Then the acceptance would still be a top-hat function (or
a combination of them), but now as a function of measured decay time, rather
than true decay time. Nothing would change in the illustrations 2, except that
all quantities are now offline-measured quantities, and the acceptance for the
event is plotted as a function of the measured proper time.

We can write the probability to measure a decay time t0 (given the IP cut and
the decay kinematics that relate the impact parameter to the time measurment
for any given decay) as an integral over all true decay times t in terms of the
following functions:

• The probability that a particle decays with true decay time t, given its
mean life it τ ,

1
τ

e
−t
τ .

• The probability that, given the true decay time t and measurement un-
certainty of σt, the measured decay time is t0

1√
2πσt

e
− (t−t0)2

2σt
2 .

• The acceptance as a function of the measured decay time t0 for the given
decay kinematics.

Aip (t0) .

In terms of these parameters, the total probability is:

P (t0) =

∞∫
0

1
τ e

−t
τ

1√
2πσt

e
− (t−t0)2

2σt
2 Aip (t0) dt

∞∫
−∞

∞∫
0

1
τ e

−t
τ

1√
2πσt

e
− (t−t0)2

2σt
2 Aip (t0) dt dt0

(5)
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If the impact parameter cut were applied on the offline quantities,

Aip (t0, . . .) =
∑

i=all
intervals

(θ(t0 − tmin i)− θ(t0 − tmax i)) (6)

where θ is the Heavidside function. It has this simple form because we es-
tablished a direct link between the offline impact parameter and the measured
lifetime.

5 The signal PDF for different online and offline
quantities.

The real trigger uses fast-measured SVT quantities rather than offline quantities
to cut on, thus, at first sight, destroying the one-to-one correspondence between
impact parameters and cτ . We will now re-establishing a direct link between
the SVT-measured impact parameter and measured lifetime, and thus keep the
very simple form of the acceptance function Equation 6.

5.1 Using ∆d0

To to so, we simply include the difference between the offline impact parameter
and the SVT impact parameter amongst those parameters that we assume to
be lifetime independent. This means that if we plot the (true) lifetime in bins of
“(SVT impact parameter) minus (offline impact parameter)”, we assume that
the distributions will all look the same. This is the case if the SVT impact
parameter error is independent of the actual value of the impact parameter,
which can be validated using the same data the fit is performed on. Figure
3 illustrates how the SVT-d0(cτ) is calculated from the offline d0(cτ) using
dSVT
0 = doff

0 + ∆d0, assuming a constant ∆d0. One of the advantages of this
method is that we do not need to know the actual impact parameter error. The
SVT resolution function can have any shape. This method can even handle
systematic shifts in the impact parameter measurement of the SVT, as long
as those shifts are uniform within the allowed impact parameter range, which
means that is method is much more robust and requires a far less detailed
understanding of the SVT performance than any Monte-Carlo based method.

5.2 The discretised SVT d0

While the method is intrinsically insensitive to shifts and skews in the SVT-d0

resolution function, it turns out to be surprisingly sensitive the the discreti-
sation in the SVT-measured impact parameter. The SVT, using fast integer
arithmetic to fit the track parameters, returns impact parameters in multiples
of 10 µm, i.e. possible values are dSVT

0 = 0,±10 µ,±20 µ,±30 µ, . . .. A typical
dSVT
0 distribution in Monte Carlo, for values between 120 µ and 500 µ, is shown
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Figure 3: Re-establishing the direct link between impact parameter cuts (in
SVT) and measured lifetime (measured from offline data).
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in Figure 4. Steps of 10 µ seem small compared to the SVT resolution of about
∼ 50 µm, but ignoring this discretisation results in a significantly biassed fit re-
sult. Ignoring the effect in a fit to 15 k detailed MC events yielded a fit result of
cτ = 448± 6 µm for an input value of 496 µ, about 10σ off. This is easy to take
into account though. As the event is slid along in cτ , the SVT-d0 is not simply
calculated as dSVT

0 (cτ) = doff
0 (cτ) + ∆d0, instead the result for dSVT

0 is rounded
to the nearest 10 µm.

dSVT
0 (cτ) = [nearest multiple of 10 µm of]

(
doff
0 (cτ) + ∆d0

)
.

With this modification, the fit result, using the same events, is 494± 7 µm,
in good agreement with the input value of 496 µm. More on detailed and toy
Monte Carlo studies in Section 11.

5.3 The full PDF with realistic SVT errors, but a flat SVT
efficiency between d0 = 0 and d0 = ∞.

Now we have a direct relationship between the measured lifetime and the SVT
impact parameter. So we can take the decay geometry and vary, as the only
parameter, the measured lifetime by sliding the decay vertex position along the
direction of the measured momentum. For each position of the decay vertex,
we can calculate, from the measured decay geometry, the corresponding offline
impact parameter, and get from that the impact parameter the SVT would have
measured for any given measured decay time, as illustrated in figure 3.

Because of the direct correspondence between measured lifetime and SVT-
measured impact parameter, the acceptance in terms of the measured time t0
is still:

Aip (t0, . . .) =
∑

i=all
intervals

(θ(t0 − tmin i)− θ(t0 − tmax i)) (7)

With this equation 5 becomes:

P (t0) =

∞∫
0

1
τ e

−t
τ

1√
2πσt

e
− (t−t0)2

2σt
2 dt

∑
i=all
intervals

tmax i∫
tmin i

∞∫
0

1
τ e

−t
τ

1√
2πσt

e
− (t−t0)2

2σt
2 dt dt0

(8)

measurement. Using the frequency function

F(x) =
1√
2π

x∫
−∞

e
−y2

2 dy (9)
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this can be written as

P (t0) =
1
τ e

−t0
τ + 1

2
σ2

τ2 F
(

t0
σ −

σ
τ

)
∑

i=all
intervals

tmax i∫
tmin i

1
τ e

−t0
τ + 1

2
σ2

τ2 F
(

t0
σ −

σ
τ

)
dt0

=
1
τ e

−t0
τ + 1

2
σ2

τ2 F
(

t0
σ −

σ
τ

)
∑

i=all
intervals

[
−e

−t
τ + 1

2
σ2

τ2 F
(

t
σ −

σ
τ

)
+ F

(
t
σ

)]t=tmax i

t=tmin i

(10)

Deviding both numerator and denominator by e
1
2

σ2

τ2 makes the formula numer-
ically robust against very large values for σ/τ , yielding very large values for

e
1
2

σ2

τ2 . So finally we get:

P (t0) =
1
τ e

−t0
τ F

(
t0
σ −

σ
τ

)
∑

i=all
intervals

[
−e

−t
τ F

(
t
σ −

σ
τ

)
+ e−

1
2

σ2

τ2 F
(

t
σ

)]t=tmax i

t=tmin i

(11)

The Frequency Function F can be calculated by fast numerical algorithms, im-
plemented for example in the cernlib function FREQ, a C++ translation of which
is available in root as TMath::Freq. Therefore, with equation 10, or equation
11, we have a fully analytical formula to calculate the log-likelihood function,
taking into account the SVT-based trigger.

The only task remaining is to use the direct relationship between the offline-
measured time and the SVT-impact parameter to find the intervals of measured
times within which a given decay would be accepted. The trigger does not only
cut on one impact parameter, but requires two tracks to pass the impact pa-
rameter cuts, pt cuts and χ2 cuts. The SVT also calculates the Lxy of each
track pair, from the above information. We can calculate what impact parame-
ter the SVT would have measured for each measured decay time, and know all
the other SVT quantities used by the trigger. So, sliding the decay-tree up and
down along the measured momentum direction, we can calculate for each posi-
tion (each possible measured time), if the event would have passed the trigger
or not. In practice, this is implemented as a search algorithm. The algorithm
scans through all times between some absolute minimum and maximum time
cut in sensibly sized steps for a first estimate. It then refines the intervals using
standard iterative methods.
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6 The cut-off in the SVT single track efficiency,
and the absolute trigger efficiency for 2 tracks
and more.

6.1 Why it doesn’t matter for 2 tracks

For two particle final states (like Bd → ππ, Bs → KK), the absolute value of
the efficiency function is irrelevant, because it only changes between zero, and
a constant non-zero value as we slide the event along in cτ . The absolute value
of that constant does not affect the fit. Note that this argument assumes that
the SVT track-finding efficiency is independent of cτ . This is a reasonable
assumption for tracks with |d0| < 1 mm. For the 2-track case, the trigger cuts
ensure |d0| < 1 mm for both tracks. Since no track with |d0| > 1 mm enters
the fit, it does not matter that the trigger efficiency does not remain constant
beyond that point.

6.2 The complication for more than 2 tracks

An interesting complication arises if there is more than one track pair in the
decay that could fire the trigger. As we slide the decay along, there’ll be regions
in cτ where one track pair is available for triggering, and others, where there
are two. In general, the efficiency should be higher if two track pairs satisfy
the the trigger requirement, rather than only one. This is because, for a given
single-track finding efficiency of the SVT (which is around 50%), the probability
of finding two tracks out of three is higher than the probability of finding two
out of two.

If the SVT track finding efficiency were indeed independent of cτ , the following
argument would save us the complicated calculation: We could simply calculate

P(t|t ∈ [tmin, tmax])

given that the SVT found exactly those tracks it did. Given the found tracks,
the trigger efficincy is either 1 or 0, no matter how many tracks are available
for triggering.

Unfortunately, beyond |d0| = 1mm, the SVT efficiency is clearly not flat, instead
it drops quite rapidly, as shown in figure Figure 5. This is not a problem for
two body decays, because tracks with |d0| > 1 mm are never seen because of the
very trigger requirements we are correcting for. But in a three body decay, two
tracks with 0.12 mm < |d0| < 1 mm can fire the trigger, while the third track
can have an impact parameter |d0| well beyond 1 mm, where the SVT single
track finding efficiency is essentially 0. This track won’t have an SVT-measured
d0. As we slide the event along in cτ , at some point the d0 of the third track
will be < 1 mm, and it could potentially play a role in the trigger decision. We
now need two pieces of information to get the trigger efficiency at this cτ :

• How likely would the track have been found by the SVT?
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Figure 5: SVT single track finding efficiency as a function of |doff
0 | in Monte

Carlo, for the πB from the Bu in Bu → D(KπD)πB with pt > 1.5 GeV. The
arrows indicate doff

0 values for a 3-track event. Tracks 1 and 2 have an SVT
match. Track 3 hasn’t. As the efficiency fct for this event is calculated for
different values of cτ , at some point track 3’s |doff

0 | would be below 1000µm.
Would it have an SVT match? What would the SVT-d0 be?
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• What would the SVT-measured d0 have been?

6.3 Easy, but expensive ways out

There are two simple ways out of this predicament, that ensure that there never
is a track with |d0| > 1 mm, and therefore no need answer to the two questions
posed in the previous section:

• “Two track”: Treat a multibody decay like a two body decay, by declaring
two tracks as “trigger tracks” and re-applying the trigger condition using
these two tracks only. Note that the decision which two tracks are the
trigger tracks must be made before we know if they actually fired the
trigger or not – we can’t increase event numbers by simply chosing event-
by-event the tracks that actually did fire the trigger. This way we are back
in the same situation as for two-body decays and don’t need to worry what
happens to the SVT efficiency beyond |d0| = 1mm. This solution is rather
costly in statistics.

• “Fiducial cut”: Use all tracks in the trigger decision, but impose a cut
requiring all of them to have an impact parameter |d0| < 1 mm. The
effect of this cut on the acceptance as a function of cτ can be calculated
in the same way as that of the other impact parameter cuts. Again, no
track with |d0| > 1 mm affects the calculation of the trigger acceptance,
and it doesn’t matter how the SVT single-track finding efficiency looks like
beyond 1 mm. This solution is not very costly in the number of events, but
since it reduces the width of the lifetime window, it significantly reduces
the statistical power per event, due to the effect discussed in [4].
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Figure 6: ∆d0 Distribution for tracks in Bu → Dπ candidates.
Signal Monte Carlo Data (∼ 16% signal)
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Since both simple solutions outlined above are too costly in statistical precison,
we will have to answer the above questions, how likely a track is to be found
once its |d0| is below 1mm (single track SVT efficiency), and what its impact
parameter would have been.

6.4 Solving the > 2 track problem in an efficient way

So in order to fit lifetimes efficiently, we will finally have to answer the questions:

• What would the SVT-measured d0 have been for those tracks that haven’t
got an SVT match?

• How likely is a track to be found by the SVT?

We will then use this to calculate the absolute value of the SVT efficiency, which
will vary depending on how many tracks pass the trigger requirements at a given
cτ .

6.4.1 Assigning a value for the SVT-d0 to those that haven’t got one.

As we slide the event along in cτ to calculate the efficiency, we calculate the SVT
d0 at a given value for cτ from the offline d0, assuming that ∆d0 ≡ dSVT

0 − doff
0

is independent of cτ . To assign a value for the SVT-d0 to those tracks that
weren’t actually found by the SVT (for example because their d0 was outside
the SVT acceptance), we first histogram the ∆d0 ≡ dSVT

0 − doff
0 distribution

for those tracks where this information is available. Such a histogram is shown
for real data in figure Figure 6. For all tracks without an SVT d0, we draw a
random number from this histogram, i.e. we generate a random ∆d0 according
to the ∆d0 distribution found in data.
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Table 1: Trigger efficiency in terms of the SVT-single track finding efficiency,
for a three particle final state.

Number of track-pairs
passing the trigger
cuts, out of 3 tracks

Trigger efficiency in
terms of εs

1 track pair ε2
s

2 track pairs 2ε2
s − ε3

s

3 track pairs 3ε2
s − 2ε2

s

6.4.2 Absolute Trigger efficiency from the SVT single-track finding
efficiency

Now that we include tracks outside the d0 range where the SVT single track
finding efficiency is flat, we cannot simply calculate the efficiency function given
that the SVT found the exactly those tracks it did, because this condition is no
longer cτ independent. Therefore the efficiency function will no longer simply
be either 1 or 0. Instead it will depend on the number of tracks available for the
trigger decision, and the probability of the SVT to find those tracks. In order to
decide which track combinations could have fired the trigger, we need dSVT

0 for
all tracks involved, including those which were not actually found by the SVT.
For the tracks not found in the SVT we use the dSVT

0 values generated from
random numbers and the measured ∆d0 distribution, as described in Section
6.4.1 above.

In order not to have to model the complicated turn-off curve of the SVT effi-
ciency near |doff

0 | = 1 mm we describe the SVT single track finding efficiency as
flat for |doff

0 | < 1 mm and zero elsewhere. For this to be accurate, we have to
treat those tracks with |doff

0 | > 1 mm as having not been found by the SVT. With
this simple form, the SVT single-track finding efficiency is described by a single
parameter, the SVT single track finding efficiency for tracks with |doff

0 | < 1 mm,
εs. At each given cτ , for each given track, the SVT single track finding efficiency
is either 0 or εs.

The total SVT efficiency is the probability that at least one track pair that sat-
isfies the trigger requirements will be found by the SVT. This can be expressed
as a polynomial in εs. The possible values for the SVT efficiency for the three
track case are given in Table 1. For 4 or more tracks in the final states, this is
a bit more complicated, for example we would need to distinguish two possible
ways in which 2 track pairs could pass the trigger: the pairs could either have
a track in common, or not. In the computer program calculating those effi-
ciencies, this is handled in the most general way, allowing to calculate the total
efficiency for any number of tracks and any track combination. This is achieved
by generating a “decision tree” at the end of which stand all possible, mutually
exclusive combinations of found and missed tracks. The probability for each
such combination is calculated, where each track found contributes a factor of
εs, and each missed track a factor of (1− εs). These probabilities are added up
for all combinations that pass the trigger cuts. This process is illustrated for
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Figure 7: Decision tree for the example of 3 tracks in the final states. Each
track can either be found (probabilitye εs) or not be found (probability 1− εs)
by the SVT, giving 23 = 8 possible combinations. The total trigger efficiency is
calculated by adding up the individual probabilities of those combinations that
pass the trigger cuts.
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the three-track case in Figure 7, from which the results listed in table Table 1
can be read off in the following way:

• 1 pair: If for example only the track pair (A,B) passes the trigger cuts,
we need to add up the probabilities for combinations 1 and 2, giving
ε3

s + ε2
s(1− εs) = ε2

s.

• 2 pairs: If (A,B) and (B,C) pass, but not (A,C) (for example because
of the opposite charge requirement), the possible combinations are 1, 2, 5,
giving ε3

s + ε2
s(1− εs) + ε2

s(1− εs) = 2ε2
s − ε3

s.

• 3 pairs: If all three possible track pairings pass the trigger requirements
(which is possible in the B CHARM LOWPT scenario which has no op-
posite charge requirement), we add up combinations 1, 2, 3, 5, giving 3ε2

s−
2ε3

s.

6.4.3 Fitting εs

The method described above requires the absolute value of the SVT single track
finding efficiency. This is fit at the same time as the lifetime, and the other pa-
rameters of the fit. The information used to fit the single track finding efficiency
is the number of tracks found in each event, relative to the minumum of 2 re-
quired to pass the trigger. For the three track case, it is the frequency of finding
two tracks in the SVT versus three, for those events where all three tracks are
within the SVT’s reach, i.e. have |doff

0 | < 1 mm and a minimum pt of 2 GeV.
The probabilites associated with those track configurations are exactly those at
the end of the decision tree in Figure 7.
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It is obvious that for two body decays, there is not enough information to fit the
single track finding efficiency, because in order to pass the trigger, all decays will
have exactly two tracks found in the SVT. Fortunalety this doesn’t matter, since
the single track finding efficiency is not needed for two body decays anyway, as
discussed in Section 6.1.

6.4.4 The full signal PDF with realistic trigger for decays to three
or more particles

For 2 body decays, the probability density function given in Equation 7 is suf-
ficient to fit a lifetime to an SVT-biassed signal sample. For multibody decays
the PDF needs to modified to take into account the above considerations. We
will use the following definitions:

• P (trk|εs): The probability to find exactly the given track combination,
which corresponds to one single element at the end of the decision tree in
Figure 7.

• P (trigger|trk , to) The probability that the given track configuration fires
the trigger, given the impact parameters etc calculated for the measured
decay time to, using the sliding method. This is either 1 or 0.

• P (trigger|εs, to): The probability that the trigger fires, given εs, but
summed over all possible track combinations that could have fired the trig-
ger, p(trigger|εs, to) =

∑
trk p(trk |εs)P (trigger|trk , to). This corresponds

to the entries in Table 1. It is essentially the normalisation factor to go
with P (trk|εs)P (trigger|trk , to)

• polyi(εs): Since P (trigger|εs) is constant for t0 within one time interval
with constant track configuration, it can be replaced by polyi(εs), where
the index i labels the time interval, and polyi(εs) is one of the polynomials
in table Table 1 (or equivalent).

With these definitions, the PDF for a single decay can be expressed as

P (t0) =
P (trk|εs)P (trigger|εs, to) 1

τ e
−t0

τ + 1
2

σ2

τ2 F
(

t0
σ −

σ
τ

)
∑

all trk

∑
i=all
intervals

tmax i∫
tmin i

P (trk|εs)P (trigger|εs, to) 1
τ e

−t0
τ + 1

2
σ2

τ2 F
(

t0
σ −

σ
τ

)
dt0

=
P (trk|εs) 1

τ e
−t0

τ + 1
2

σ2

τ2 F
(

t0
σ −

σ
τ

)
∑

i=all
intervals

polyi(εs)
[
−e

−t
τ + 1

2
σ2

τ2 F
(

t
σ −

σ
τ

)
+ F

(
t
σ

)]t=tmax i

t=tmin i

(12)

where we ommitted P (trigger|εs, to) in the numerator because it is 1 for all
events in the sample.
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6.5 The trigger at Level 3

We must confirm that the decay tracks can pass the trigger in this analysis.When
doing this we must consider the information that the trigger had and not the
offline quantities that we calculate during offline.

The trigger at Level 2 uses SVT quantities which are used to confirm the trigger
at Level 2 as explained previously. At Level 3 there are Level 3 tracks that are
used to decide if the event satisfies the criteria. Therefore it is more accurate
for us to use the Level 3 tracks to confirm the Level 3 trigger rather than the
offline quantities.

Each event comes attached with a Level 3 bank which contains a list of Level 3
tracks and their properties. This object only contains tracks with PT > 1.2GeV
but this does not pose a problem for us as all track in a trigger decision must
have Pt greater than 2GeV. To use these tracks we must match the offline tracks
to L3 ones and then use the L3 information of the matched track to see if the
event passes the trigger and then use this information again to calculate the
acceptance function.

The tracks are matched using the the Pt and phi for the offline tracks and
finding which L3 track comes closest. To to this we look for the L3 track that
has the minimum value for this chi-square like quantity shown below (equation
13)

χ2 =
(OffPT

− L3PT
)2

σ2
L3PT

+
(Offφ − L3φ)2

σ2
L3φ

+ (13)

6.6 Toy-MC

In order to test the basic principle, a toy-Monte Carlo simulation is used that
generates isotropic B0

s → Dsπ events with a mean B0
s -lifetime of 1.55 ps and a

mean Ds-lifetime of 0.49 ps. The 2-D impact parameter resolution is assumed
to be Gaussian with 33 µm(intrinsic)⊗ 33 µm(beam-spot). The impact param-
eter measured in the x-y plane is required to be between 0.12 mm and 1mm.
Alternative intrinsic IP resolution functions have been tried out to demonstrate
the robustness of the method against systematic effects:

• “Standard”: A simple Gaussian resolution function with σ = 33 µ, as
described above.

• “Offset”: A Gaussian resolution function with σ = 33 µ, with an offset of
33 µ, i.e. the mean measured SVT impact parameter is 33 µ larger than
the true one.

• “Exponential from hell”: A positive exponential with an rms of 33 µ,
i.e. the SVT impact parameter is always bigger than the true impact
parameter, and the difference is distributed according to an exponential
with a “lifetime” of 33 µ.
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Figure 8: Toy MC pulls 1− 2k MC experiments, 0.5k signal evts each, S/B = 1,
with different intrinsic IP-resolutions
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None of these rather drastic biases produces a bias in the fitted lifetimes (Figure
8).

6.7 Detailed MC

The method has been tested on a Monte Carlo sample of Bu → Dπ signal events,
with a detailed detector simulation, in particular a detailed simulation of the
SVT and the trigger. 35 k events passed all cuts, including those imposed on
the SVT. The fit result of 495± 5 µ compares well with the true value of 496 µ.
A projection of the fit to the MC data is shown in figure 9.

7 Including Background

7.1 Introduction

So far, we have described a Monte Carlo-free method to correct for the trigger
bias, that works on signal data alone. Including background makes the situation
considerably more complicated, because the basic trick we applied doesn’t quite
work anymore. In our PDF, we calculate the probability to find a lifetime given
the efficienty function Atrig, calculated from the decay kinematics that translate
the trigger cuts into different lifetime cuts event by event. The argument was
that those kinematics do not themselves depend on the lifetime, and the corre-
sponding term in the PDF can be ignored. Mathematically: In the expression

P (cτ, kin) = P (cτ |kin)P (a) (14)

we can ignore P (kin) because it is a simple factor and d
dτ P (kin) = 0. However,

if we add background, the full expression is (where P (s) is the signal probability
and P (b) = 1− P (s) the background probability)

P (cτ, Atrig) = P (s)P (cτ |Atrig, s)P (Atrig|s) + P (b)P (cτ |Atrig, b)P (Atrig|b) (15)
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Figure 9: Monte Carlo-independent lifetime fit (line) to 35k simulated B+ → Dπ
events (crosses), subject to the impact parameter trigger at CDF, using a detailed
detector simulation. MC-input: cτ = 496 µm. Fit result: cτ = 495± 5 µm.

Now the efficiency-function terms, P (Atrig|s) and P (Atrig|b), only factor out if
they are the same for signal and background. If they are different for signal and
background, ignoring these factors is equivalent to getting the signal fraction
wrong in the fit, which is more obvious if we re-write Equation 15 as

P (cτ, Atrig) = P (s)P (Atrig|s)P (cτ |Atrig, s) + P (b)P (Atrig|b)P (cτ |Atrig, b)(16)
= {P (s|Atrig)P (cτ |Atrig, s) + P (b|Atrig)P (cτ |Atrig, b)}P (Atrig)(17)

So we can either, as in Equation 16, fit the probability to find a given efficiency
function, or at least, as in Equation 17 calculate an event-by-event signal proba-
bility based on the efficiency function. The last term in Equation 17, describing
the total probability to get the given efficiency function (whether it’s signal or
background), does indeed factor out and can be ignored, but if we ignore the
kinematics alltogether, we will get the event-by-event signal fractions wrong and
hence the wrong fit result.

The same problem shows up for anything that changes our PDF event-by-event,
be it the event-by-event efficiency functions, or event-by-event lifetime errors.
The latter is the ex ample used by Giovanni Punzi when he discusses this effect
in [6].
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7.2 The full likelihood with everything

Now that things are getting more complicated, it is worth starting from scratch,
deriving the exact expression for the probability density function from first
principles. We’ll use the following notation:

• P (A) “probability of A”

• P (Ā) “probability of not A”

• P (A,B) “probability of A and B”

• P (AorB) “probability of A or B”

• P (A|B) “probability of A given B”

Some rules of manipulating probabilities: In the following, we’ll basic rules of
manipulating probabilities. Here’s a reminder:

• A and B
P (A,B) = P (A)P (B|A) (18)

• ... which leads to Bayes’ theorem

P (A|B) =
P (A,B)
P (B)

=
P (A)P (B|A)

P (B)
(19)

• A or B.
P (AorB) = P (A) + P (B)− P (A,B) (20)

We include the following measured quantities in our fit:

• The measured lifetime, to.

• The error estimate for the lifetime σt.

• The efficiency function Atrig, calculated from the decay kinematics and
the trigger cuts.

• The mass, m.

• The track-configuration observed, trk . Basically how often we find, say,
three tracks in the SVT compared to two. Used to fit the SVT’s single
track efficiency.

Since we only have triggered events, we want to calculate the probability of
making these measurements, given the event passed the trigger:

P (to, σt,m, trk , Atrig|trigger) (21)

It is important at this point, to distinguish between the probability of finding
an acceptance function, P (Atrig), and the probability that the trigger triggers,
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P (trigger). P (Atrig) depends on the decay kinematics only, it is simply the
probability to find an event where the decay kinematics translate the trigger
cuts to the given efficiency function. P (trigger|Atrig) is the probability that
a decay with these kinematics passes the trigger. This includes integrating
over all other quantities (decay times, masses, track configurations), for the
given acceptance function. It is basically the denominator in 12. P (trigger) is
the same, except that it now also requires the integration over all acceptance
functions, i.e. this is what you’d calculate using an average accepance function,
for example derived from Monte Carlo. The difference between P (Atrig) on
one side, and P (trigger), P (trigger|Atrig) on the other, is important, because
P (trigger) and P (trigger|Atrig) depend on the mean lifetime, while P (Atrig)
doesn’t.

Now we have background, we separate Equation 21 into a signal and a back-
ground part. We use the letters s and b for signal and background. Using
Equation 20, P (s, b) = 0, and P (sorb) = 1:

P (to, σt,m, trk , Atrig|trigger) = P (s, to, σt,m, trk , Atrig|trigger)
+ P (b, to, σt,m, trk , Atrig|trigger) (22)

In the following, we focus on the first term on the right hand side in Equation
22, only:

P (s, to, σt,m, trk , Atrig|trigger) (23)

The results for
P (b, to, σt,m, trk , Atrig|trigger) (24)

will be analogous.

So far, nothing has happened. Using Equation 19 on Equation 23 gives:

P (s, to, σt,m, trk , Atrig|trigger)

=
P (s, to, σt,m, trk , Atrig) P (trigger|s, to, σt,m, trk , Atrig)

P (trigger)
(25)

Note that P (trigger|s, to, σt,m, trk , Atrig) is either 1 or 0, because the trigger
decision is completely determined by the efficiency function, the decay time, and
which tracks have actually been found by the SVT. The denominator in Equa-
tion 25 is the probability that the trigger fires - we would rather re-write this
in terms of the event-by-event probability that the trigger fires given the accep-
tance function, P (trigger|Atrig). The lifetime error σt also enters the calculaton
of P (trigger|Atrig), and if we want to use the event-by-event lifetime error as
in the numerator, we better find an expression in terms of P (trigger|σt, Atrig).
And finally, it is easier to calculate this denominator for signal and background
separately, so the aim is to find an expression in terms of P (trigger|σt, Atrig, s).
Using Bayes’ theorm (19), we find for the denominator in Equation 25:

P (trigger) = P (trigger|Atrig, σt, s)
P (Atrig, σt, s)

P (Atrig, σt, s|trigger)
(26)

The left-hand term in the numerator of Equation 25 can be written as

P (s, to, σt,m, trk , Atrig) = P (s, σt, Atrig) P (to,m, trk |s, σt, Atrig) (27)
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Putting these together (note the cancellation of P (Atrig, σt, s)), and abbreviat-
ing P (trigger|s, to, σt,m, trk , Atrig) as P (trigger|all) , we get:

P (s, to, σt,m, trk , Atrig|trigger)

=
P (to,m, trk |s, σt, Atrig) P (Atrig, σt, s|trigger)P (trigger|all)

P (trigger|Atrig, σt, s)
(28)

The first term in the numerator can be split further

P (to,m, trk |s, σt, Atrig)
= P (to|s, σt, Atrig) P (trk |to, s, σt, Atrig) P (m|trk , to, s, σt, Atrig) (29)

So far, we only used basic rules of manipulating probabilities, nothing else. Now
we make some sensible assumptions:

• to, the measured lifetime, is independent of the Atrig, i.e. the decay kine-
matics. Remember that Atrig is all about decay kinematics, so P (to|Atrig)
is not the probability of measuring to given the trigger, but it is the prob-
ability of finding to given the decay kinematics that translate trigger cuts
into lifetime cuts, before the trigger is applied.

• trk , the number of tracks found by the SVT, is independent of σt, and
Atrig. Again, remember that Atrig is all about decay kinematics, so
P (trk |Atrig) is not the probability to find k out of n tracks in the SVT
given the trigger, but it is the probability of finding k out of n tracks in the
SVT given the decay kinematics that translate trigger cuts into lifetime
cuts.

• m, the reconstructed mass, is independend of trk , to, σt, Atrig.

With this we get:

P (to,m, trk |s, σt, Atrig) = P (to|s, σt, Atrig)P (trk |to, s) P (m|s) (30)

so our PDF is now:

P (s, to, σt,m, trk , Atrig|trigger)

=
P (to|s, σt) P (trk |to, s)P (m|s) P (Atrig, σt, s|trigger)P (trigger|all)

P (trigger|Atrig, σt, s)
(31)

Finally, we’ll have to deal with the second but last term in the numerator,
P (Atrig, σt, s|trigger). Note that the condition “|trigger” ensures that we need
to look only at quantities as the are distributed after the trigger, which is also
all we have access to. There are several different ways in which this term could
be disentangled

1. P (s|trigger)P (σt|s, trigger)P (Atrig|s, trigger), where the first term is sim-
ply the overall signal fraction after the trigger, i.e. in the data we see.
The other terms fit the σt and Atrig distribution (how to fit a distribution
of acceptance functions is the subject of an entire section later on). Here
we assume that Atrig and σt are independent.
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2. P (Atrig, σt|trigger)P (s|Atrig, σt, trigger). Here we can ignore the first term,
as it does not depend on the parameters we are interersted in, and it is
the same for signal and background. The second term is a signal fraction
as a function of Atrig and σt. While there are other possible disentangle-
ments this turns out to be the default solution that we choose. Since the
acceptance function and σtare both quanities computed from Lxy or σLxy

divided by PT , there will be a correlation between these two terms. We
cannot further disentangle the second term without having to model this
correlation as well as any other terms that arise. So we keep the one term
P(s—Atrig,σt,trigger). We use fisher discriminants to model this term, but
this is complicated enough to deserve its own section 8.

With this, the final version of the signal-part of the total PDF is:

P (s, to, σt,m, trk , Atrig|trigger)
= P (s|Atrig, trigger)×

P (to|s, σt) P (σt|s, trigger) P (m|s) P (trk |to, s) P (trigger|all)
P (trigger|Atrig, σt, s)

(32)

The different terms in the PDF are listed below. Where background has a
different model this is also described:

P (to|s, σt) This is the probability of measuring a lifetime to, given a lifetime
error σt, for signal events with a mean lifetime τ . It is given by

P (to|s, σt) =
1
τ

e
−t0

τ + 1
2

σ2

τ2 F
(

t0
σ
− σ

τ

)
(33)

P (to|b, σt) The background lifetime component is modelled as a sum of events
coming from 3 “lifetimes” τi each with their own relative weight. These
are left to float in the final fit.

P (m|s) The signal mass distribution is by a 2 Gaussians with different means
and widths. Further details of this mass model and why it is chosen are
described in another section 13.

P (m|b) The background mass distribution is a first order polynomial. Reasons
for this choice are detailed in section 13.

P (trk |to, s) The probability to find the given track configuration in the SVT,
expressed in terms of the SVT’s single track finding efficiency, εs. It is
given by

P (trk |to, s) = P (SVT found k tracks out of n|to, s) = εk
s (1− εs)

(n−k)

(34)
where k is the number of tracks found in the SVT, and n is the number of
tracks available to be found; n is smaller or equal to the total number of
tracks in the final state. A track is “available” if it has |doff

0 | < 1 mm and
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pt > 2 GeV. Note that this is not the usual “n over k” expression, because
we are not asking for the probability that any k out of n tracks are found,
but that those specific k tracks that have SVT matches are found, and
the others not.

P (trigger|all) The probability that the trigger fires, given all measured quanti-
ties. This is simply one or zero:

P (trigger|all) =
{

1 if event passes trigger cuts
0 else

}
(35)

So its value is 1 for all events in the sample and could be omitted. It is
however useful a term to keep in mind if one wants to calculate the PDF
for values of, say, cτ , not actually found in the event, for example if one
wants to integrate the expression.

P (trigger|Atrig, σt, s) The probability that the trigger fires, given the efficiency
function Atrig and the event-by-event error estimate σt. It’s the normali-
sation factor. It’s given by:

∑
all trk

∑
i=all
intervals

tmax i∫
tmin i

P (trk |to, s)P (trigger|all)
1
τ

e
−t0
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τ2 F
(
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dt0

=
∑
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polyi(εs)
[
−e
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+ F
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σ

)]t=tmax i

t=tmin i

(36)

P (s|Atrig, σt, trigger) The signal fraction as a function of the acceptance func-
tion. This is tricky because it involves a function of a function, rather
than the usual function of a parameter. The strategy we follow is, to
characterise the the the acceptance function with a single number and
then evaluate signal/background probabilities as a function of this num-
ber. In doing so, we need to make sure that

P (s|Number(Atrig)) ≈ P (s|Atrig) (37)

to a good-enough approximation. This means that the characteristic num-
ber must be chosen such as to minimise the information loss in the process
(Atrig) → number, in terms of the signal-ness or background-ness of the
acceptance function. A relatively simple number to calulate that is very
good at separating signal from background, i.e. at minimising the infor-
mation loss regarding the signal-ness or background-ness of the acceptance
function, is the Fisher discriminant. In the following we describe how we
associate a Fisher discriminant to each acceptance function, using data
only, and then how we use this to calculate P (s|Atrig, trigger). We test
the method by fitting a mixture of MC signal and background from data.

8 Fisher Discriminant to calculate P (s|acc, σcτ)

P (s|acc, σcτ ): The more complicated term to deal with is the acceptance func-
tion. The use of fisher discriminants is introduced to deal with this term. Let
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us first consider the term P (s|acc), and then later show the simple extension to
P (s|acc, σcτ )

8.1 The use of Fisher Discriminants

If our acceptance function were characterizable using a set of variables then a
Fisher Discriminant Analysis could be used to separate signal and background
in the way required above. Our acceptance functions typically have the form
of top hat functions over intervals of cτ , so we can sample the height of the
function at N points, creating a vector vi with N entries. Each entry is a
variable describing the shape of the acceptance function at a given value of cτ .
In the Fisher Discriminant Analysis we find the N-component projection vector
w and use it to form the scalar product w.vi for every event. We name the
scalar product w.vi the Fisher scalar and the distribution of the fisher scalar is
parameterized to separate signal and background in much the same way as for
invariant mass or any other kinematic variable. A detailed description follows.

8.2 Basics of Fisher Linear Discriminant Analysis

Imagine two classes of events, eg signal and background with their own distri-
butions of variable x and y as shown in figures 10(a), 10(b) and 10(c). The
means of variable x and y for each distribution are shown as the points ms = xs

ys

and mb = xb

yb
. We are looking for a linear direction w on which to project these

events such that value of the projected point along w provides the best discrimi-
nator between signal and background. From the diagrams we can conclude that
the best projection direction is one where the distance between the projected
means of each class of event is large while the spread around each mean remains
small.

Firstly we consider the square of the separation of projected means of signal
and background events along the projection direction. This is given in equation
38, and gives the definition for the matrix we refer to as SM .

(< w|ms > − < w|mb >)2 =< w|(ms −mb) >< (ms −mb)|w >

=< w|SM |w >
(38)

Secondly we consider the square of the spread of the signal events around the
projected mean, Scat2sig which leads to the definition of the matrix Ssig as shown
in 39, where pi =(xi

yi
).. There is a similar expression for the background events,
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(a) The best separa-
tion here is most likely
along the means

(b) Here the separation
along the y axis is better
than along the means

(c)

Figure 10: This illustrates that it is necessary to take the means and spread of
each variable in finding the direction of best separation

Sbg.

Scat2sig =
∑

All signal events

(< w|pi > − < w|ms >)2

=
∑

All signal events

< w|(pi −ms) >< (pi −ms)|w >

=
∑

All signal events

< w|Ssig|w >

(39)

It is clear that the best projection direction is one in which the means of the
two types of events fall far apart but simultaneously the spread is small. This
is Fisher’s criterion and is expressed mathematically as finding the w for which
J(w) is maximized, where J(w) is given below 40.

J(w) =
< w|SM |w >

< w|(Ssig + Sbg)|w >
=

< w|SM |w >

< w|(Sw)|w >
(40)

From equations 41 and 42 we find that by maximizing this condition we are
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left simply with an eigenvalue equation. Furthermore using the definition of the
matrix SM we can simplify the equation and remove the need to find the actual
eigenvalues and just use the inverse of Sw and the vector (ms −mb) to find the
vector w.

∇w(J(w)) =
2SM |w >

< w|Sw|w >
− < w|SM |w >

< w|Sw|w >
.

2Sw|w >

< w|Sw|w >
= 0 (41)

SM |w > −λSw|w > = 0
SM |w > = λSw|w >

S−1
w SM |w > = λ|w >

(42)

Using the definition of SM from equation 38 we can rewrite SM |w > in the
following way.

SM |w > = |(ms −mb) >< (ms −mb)|w >

SM |w > ∝ |(ms −mb) >
(43)

If we insert this into equation 41 we see that it is not necessary to solve for
the eigenvalues and that all we require to find |w > is the inverse of SW and
|(ms −mb >.

S−1
w |(ms −mb) >∝ |w > (44)

The value of the discriminating variable is given by the scalar product of the
event vector (xi, yi) in this case and w, and this fisher scalar variable is the best
one for distinguishing between the two classes of events.

While the diagram illustrates the technique for 2 variables only, the mathematics
is general and hence we can extend this to any number of variables and the
matrices SM or Sw are just expanded to n×n square matrices, and the vectors
w etc grow to length n too.

8.3 Using the Fisher Scalar Distribution to calculate sig-
nal probability

Imagine that we could quantify the acceptance functions as a set of variables.
Then we could use fisher discriminant analysis to find the direction of best
separation. One way in which we could do this is to turn the acceptance function
into a column vector vi. A detailed description on how this is achieved follows
in the next section. Each row of the vector would be a different variable treated
similar to x and y as above. We find the vector w as above and then w.v would
be a discriminating variable, that we could use to give us the probabilities
P (s|Atrig, trigger) and P (b|Atrig, trigger). We call the variable w.v the fisher
scalar.
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Figure 11: Splitting the acceptance function into the sum of its parts

8.3.1 Acceptance function → Vector

Our acceptance functions are like a series of top hats added together. We can
draw them in a histogram by plotting the acceptance probability as a function
of cτ for every event. A typical acceptance function may look like the one
in figure 11 where the differing heights are regions in which there are 2,3 (or
more) tracks with IP in the region where it could play a part in the trigger
decision. We can write this one histogram as the sum of the histogram that
contains the sections where there are only two tracks and the histogram that
contains the section where there were are three tracks and so on. The heights of
the acceptance function are set to one and each histogram is multiplied by the
relevant probability polynomial as described in section 6.4.2. This is illustrated
in figure 11. So for each event there will be t types of histogram where t maybe
1,2 (or more) depending on the number of tracks in the final state of the decay.

The histograms are binned finely over a very large range (-500 to 10,000 mi-
crons) to ensure all parts of the acceptance function are included. We then find
the minimum and maximum bin over the whole dataset, and then rebin each
histogram into a smaller number of n bins over the new range. Typically this
number is 20 for 3 track decays and 10 for 4 track decays. The height of the
first histogram in each of the n bins provide the values for the first n bins of the
vector. We then move onto the next histogram and the height of its bins provide
the next n entries into the column vector. We arrived at the choice of 20 and
10 through testing on MC signal and background mixes. To try and preserve as
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much information as possible it is desirable to use an increased number of bins.
However we have found that using too many bins has caused problems during
the inversion of a matrix. One eigenvalue can become numerically close to zero
and this stops accurate inversion of the matrix. We found that 20 bins was a
good choice for 3 track decays; in tests it did not appear to cause a lifetime
shift, nor did we encounter errors during matrix inversion. For a 4 track decay
the total acceptance function is split over more histograms and if we used 20
bins we found that we were running into these inversion problems. We found
that reducing the number of bins used to describe the acceptance histograms to
10 was a sensible choice; again there were no indications of significant shift in
lifetime and the numerical problems were removed. While we have chosen 20
and 10 to be our default number of bins per acceptance histogram for 3 and 4
track decays respectively, we do realise that this choice is a little arbitrary and
so we include this choice as a systematic. This choice of bins actually makes
the vector sizes for 3 and four track decays the same. There is only one further
change made to this vector which will be explained in a later section.

Now that we have each acceptance function as an acceptance vector, vi, for each
event, and it is of length n*t. As there are n*t variables the matrices SM and
Sw are of dimension n∗t×n∗t. We can now consider how to find these matrices
and the vector |ms - mb > so that we can find the vector w and hence find the
fisher scalar for every event.

Since each row is treated as an independent variable, we can simply add one
further variable, σcτ . Now that σcτ is part of the overall vector, the fisher
direction takes into account both the Acceptance function and σcτ . Furthermore
as they are both in the same calculation of fisher direction any correlation
between the two quantities is accounted for.

8.3.2 Extracting ( |ms - mb >) from the dataset

If we had a sample of events which we knew , a priori, were signal and another
that we knew were background, making this vector is a trivial exercise. However
we can use a mass only fit to the data to define two regions; a sideband region
and a signal region. We can assume that all the events in the sideband region
are background events and that this background is typical of all the background
in the sample. We can find |mb > by simply summing all the acceptance vectors
in the sideband region and dividing by the number of events in this region.

The equivalent vector for events in the signal region is called |mr > which we
can write as equation 45 where we know fs from the mass fit.fs is the fraction
of signal in the signal region. The vector ( |mr - mb >) is proportional to ( |ms

- mb >). This is our vector for the difference between the means.

mr =

∑
events in

signal region
|vi >∑

events in
signal region

1

|mr > = fs|ms > +(1− fs)|mb >

|mr −mb > = fs|(ms > −|mb >)

(45)
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We may find that some of the variables in the vector |ms - mb > have value 0
, which means that the variable in that entry can provide little discriminating
power. Keeping these variables in the vector turns out to cause problems during
matrix inversion and so we truncate ( |ms - mb >) by removing rows where the
entry in ( |ms - mb >) is 0. We also remove the corresponding rows from the
individual acceptance vector vi so that all the vectors have the same dimension.

8.3.3 Finding SW

We wish to find Sw which can be written as 46 where vs and vb are the ac-
ceptance vectors of pure signal and pure background events respectively. The
definition is taken from equations 39 and 40.

Sw =
∑

Signal
events

|(vs −ms) >< (vs > −ms)|+
∑

Background
events

|(vb −ms) >< (vb −ms)|

(46)

Again we consider the signal region and background region.

We can calculate the matrix called Sbk as given in equation 47 trivially as we
already have mb.

Sbk =
∑

Sideband
events

|(vi −mb) >< (vi −mb)| (47)

We can also calculate the matrix called Sbkassg given in equation 48. We
calculate |ms > as we know the value of fs from the mass fit and we know
fs*|(ms-mb) > and |mb >.

Sbassig =
∑

Sideband
events

|(vi −ms) >< (vi −ms)| (48)

The matrix S(sg +b) is calulated in 49.

Ssg+b =
∑

Signal
region
events

|(vi −ms) >< (vi −ms)|

=
∑

Signal
events insignal

region

|(vs −ms) >< (vs −ms)|

+
∑

background
events in signal

region

|(vb −ms) >< (vb −ms)|

(49)
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Figure 12: The distribution of fisher scalar is shown here from Monte Carlo is
red and that from background is blue. It is clear that their distributions are
different.

We can calculate the 3 matrices in equations 47, 48 and 49 by considering
the signal fraction under the peak, events in the signal region and events in the
background sideband. We can combine these matrices together to give us SW

as shown in 50.

Sw = Ssg+B − N0 Background in sideband
N0 Background in signal region

× Sbassig

+
N0 Background in dataset

N0 Background in sideband region
× Sbk (50)

In practice, we optimize the procedure slightly by using the event-by-event signal
probability derived from the mass fit, i.e. we use the information that events
near the center of the B mass peak have a larger signal probability than those
at the edges of our signal window.

8.4 Using the fisher variable to get signal probability

To verify the procedure, we apply it to a mix of signal MC events and background
from data. The background events from data come from the upper sideband. In
order to make the fit realistic, the reconstructed masses of the background events
are shifted so that they lie underneath the signal mass peak. For the purpose of
defining the Fisher direction and calculating the Fisher discriminant, the data-
MC mix was used like any other data sample, the information which event came
from data and which from MC was not used. We see that the two classes of
events are separated, the blue events coming from background and the red from
signal. Dividing the signal by the total we can see the distribution of signal
fraction as a function of signal.

We model this distribution using the Lagrange interpolating polynomials. Their
parameters are the value P (s|Fisher− scalar) for certain values of the Fisher
scalar, which are then smoothly interpolated - for details see [5].
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Figure 13: The data points show the truth signal fraction in the fit. The red
line shows the fitted function. The data points are shown to demonstrate that
the correct signal fraction has been found. The fit itself does not know which
events are signal or background so does not know the truth, yet manages to
match it well.

We can fit for the height of this function at regular intervals of the fisher vari-
ables. The distribution is binned and the signal fraction in each bin is a fit
parameter. An example of this function after the fit is performed is shown in
Figure 13. The fit parameters are constrained to lie between 0 and 1 as this
is a probability distribution function. The fit did not know which event were
signal or background. As we see from the figure the fit matches the truth dis-
tribution very well. The data is binned as a function of fisher scalar, and the
signal fraction in each bin is a fit parameter. Again we use Monte Carlo and
background data mixed together to find how many bins the data needs to be
split into so that the distribution is well modelled. By construction the higher
the number of bins that are used, the higher the degree of polynomial that La-
grange Interpolating Polynomials uses to fit the distribution. To fit the truth
well we found we had to use about 15 - 20 bins, and pick 18 as a default. In
doing this we do introduce some fluctuations at the end of the distribution but
as there are so few events in these regions we do not expect this to cause any
pull in the best fit lifetime result. The choice in number of bins (and therefore
order of polynomial) is tested as a systematic error.

We fit each bin for the signal fraction, and the advantage of using the Lagrange
Interpolating Polynomials is that the probability changes smoothly across the
bin instead of jumping at the bin edge. The disadvantage is that in the tails of
the fisher scalar distribution where the statistics in each bin are low the function
is poorly behaved as it is not pinned down well. This is seen in 13. To improve
this we make a small change to start and end the interpolating polynomial in
the region of high statistics and use a single bin either side to fit the tails. After
implementing this in a few test MC fits and Data we saw no shift in the fit
result, which is not surprising seeing as there were very few events in the tails.
However the plot is more pleasing and the overall function to describe the signal
fraction as a function of fisher scalar and σcτ is well behaved. The figure 14
shows this better behaved behaviour.
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Figure 14: The data points show the truth signal fraction in the fit. The tails are
now modelled by a single bin which gives a better behaved fit function although
there was no change in the lifetime result..

Figure 15: We find that realistic MC is fit well by 2 Gaussians

9 Modelling the Mass

In this section we give some detail to the mass model for signal and back-
ground. The mass fit is important for two reasons. Firstly it is present in the
full Likelihood expression and is a significant discriminant between signal and
background. Secondly the initial step in the fit is to do a mass only fit so that
we can make the fisher vector. The mass distribution is an important part of
making this fisher vector.

We discuss in detail the B0 mode, but the same model is used for both modes

All we need to do is model the shape for signal and the shape for background so
there is a good fit to the data. In both Bu and B0 there are 3 classes of events
that we classify as signal. These are the main peak, some events where one or
more photons were radiated and also some presence of the cabibbo suppressed
mode; B to DK. We treat all these three types of events as signal, and do not
distinguish between them. We have Monte Carlo that contains B → Dπ and
B → Dπ(nγ) and find that over our fit range of 5.23 to 5.5 the signal mass is
well fit by 2 Gaussians where the means and widths are allowed to float. 9

In our data the contribution of events that radiated photons may be different
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Figure 16: The wrong sign distributions looks like a first order polynomial

and furthermore there is the cabibbo suppressed mode. We try the same two
Gaussian model for data, expecting the floating parameters to adjust themselves
for these differences.

The shape of the combinatoric background should have the same shape as the
wrong sign combination of ′B′ → D − π−. We examined the mass distribution
of this reconstructed data over the fit range 5.23 to 5.5. It is well described by a
first order polynomial. We only look at the wrong sign to decide upon a sensible
shape for our model. We do not fix the slope in our data from the wrong sign
distribution.

Putting this all together

P (m|s) = f1×Gauss(m|m1, σ1) + (1− f1)×Gauss(m|m2, σ2)P (b|s) = 1 + βm
(51)

The functions Gauss and the polynomial have been normalized over the re-
stricted mass range 5.23 -5.5GeV. So in total there six parameters introduced
by this model. They are m1,m2, σ1, σ2, f1β In the initial mass fit there is an
extra parameter fs that fits the fraction of signal and background. In the final
lifetime fit the signal fraction is taken care of by the term P (s|Acc, σt)

We fit the mass parameters alone in the initial mass fit and then hold them
constant in the time fit. We find that this model fits the data well. Plots are
shown in the result section.

The extraction of the lifetime is done in a two step fit. The mass distribution is
fit first, the results of this fit are used to weight signal-like and background-like
acceptance functions which are then used in the calculation of the Fisher dis-
criminant. The second part of the fit uses the Fisher scalar distribution and the
fully reconstructed proper-decay length to discriminate signal from background.
There are seven parameters in the initial mass fit, there are two gaussians for the
signal, hence there is a mean and width for each gaussian, a fraction of events
falling in the first gaussian and a first order polynomial which describes the
background, a requirement of normalization reduces the number of background
parameters to 1 and there is a fraction of events that are signal. As described
in section 8.4 once the Fisher scalar is calculated from the mass fit the signal
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fraction from the mass fit is no longer used, rather the Fisher scalar distribution
is used to determine the probability of each event being signal. It should be
clear to the reader that the uncertainties in the mass fit are propagated to the
second part of the fit. A description of this follows:
The mass fit parameters are highly correlated with one another and so varying
the parameters by ±1σ from the first part of the fit and noting the shift in
lifetime in the second part of the fit is an incomplete treatment. It is necce-
sary to take the correlations into account and so the full error matrix of the
first part of the fit is used. The row and column corresponding to the signal
fraction is removed from this error propagation since the signal fraction from
the mass fit is not used explicitly in the second part of the fit. The rotation
matrix that diagonalizes the error matrix is found, this rotation matrix repre-
sents the transformation from the original set of mass fit parameters to their
uncorrelated linear combinations (eigenvectors of the error matrix). Errors de-
rived from the diagonal error matrix of the mass fit represent the uncertainty
on the uncorrelated linear combinations, and these are transformed back using
the rotation matrix to produce appropriately correlated variations on the mass
fit paramters. The second part of the fit is repeated with the mass fit parameter
varied, it should be clear to the reader that 6 such variations are performed
and the shifts are added in quadrature to the error in best fit lifetime from the
second part of the fit.

As this procedure requires 6 further iterations of the lifetime fit for every fit
result we only carry out this procedure for the final two results, namely the
1fb−1 lifetime for the charged and neutral B meson. We do find that the error
due to the mass fit is small, it is shown in the results section.

10 Analysis cuts for B± → D0π±, D0 → K∓π±

and for the B0 → D∓π±, D0 → K∓π±π± decay
modes

In this section we define the analysis cuts used to select B± → D0π± and
B0 → D∓π± decays. The same cuts are used for testing Monte Carlo and
analysing data. When there has been reason to depart from this for testing
Monte-Carlo we have mentioned this explicitly.

10.1 Track Quality Cuts

The following cuts are applied to all tracks from all modes:

• Each track has transverse momentum PT greater than 0.35 Gev.

• Each track is required to have hits in a minimum of 5 COT axial super-
layers and 5 COT stereo super-layers.

• Each track is required to have hits in a minimum of 3 silicon R-Φ layers.
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• Each individual track is required to have an η < 2

We use the xbh0d, xbh0h, and xbh0i datsets which are fed from the hadronic
B trigger. We begin by reconstructing a charged or a neutral D and then
combining it with a candidate track with a pion mass hypothesis to form a B
candidate. Selection cuts are applied on the Ds and the fully reconstructed
Bs. The final reconstructed quantities are obtained from the AC++ wrappered
CTVMFT vertexing program, using version 6.1.4 of CDF software and pass 17
of the alignment. All information from L00 of the Silicon detector is dropped.

The selection cuts themselves are detailed in the following subsections.

10.2 Selection cuts for the B± → D0π±, with D0 → K∓π±

We begin reconstructing D0 candidates in the K∓π± mode by combining all
opposite track combinations assigning them the mass of a K and π.

The following cuts are then applied on D0 candidates assumed to decay in the
mode: D0 → K∓π±

• Oppositely charged track pairs are assigned the mass of the K or π.

• The raw mass of the D0 must lie between 1.81 and 1.92

• The angular separation in φ between the K candidate and the flight path
of the D0 is ≤ 1.5 radians.

• The D daughters lie in a cone defined by ∆R =
√

(∆η2 + ∆φ2) < 2

• The transverse momentum of the D0 is ≥2.4 GeV.

• The scalar sum of π∓ and K ± transverse momenta is ≥ 2.4GeV

• The K± and π∓ PT s are each individually ≥ 0.4GeV

Next we loop over all tracks in the event with charge opposite to the π∓ from the
D0 that are not its daughters and assigning them the mass of a π and constrain
the 3 tracks to a common vertex this is our B± candidate on which the following
selection criteria are applied:

• The reconstructed B mass lies between 5.23 and 5.5 GeV

• The transverse flight distance of the B in the direction of its ~PT ( Lxy) is
> 350µm and < than 1 cm

• The candidate B vertex χ2 < 15

• The PT of the π± from the B± is ≥ 1 GeV.

• The impact parameter of the B with respect to the beam spot is < 80µm.
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• The angular separation in φ between the B and its π daughter is ≤ 3.0
radians

• The momenta of the D and π from the B lie within a cone defined by
∆R =

√
(∆η2 + ∆φ2) < 2

• All the B daughters have a z0 within 5cm of each other.

• The B± transverse momentum (PT ) ≥5.5

• The scalar sum of all B daughter charged tracks PT s is ≥ 5.0

• The calculated uncertainty of the proper decay time (×c) of the B, σcτ is
less than 100 µ m

10.3 Selection cuts for B0 → D∓π±, with D → K±π∓π∓

We begin reconstructing D± candidates in the K∓π±π± mode by combining
all 3 track combinations with two of like charge and one with charge opposite
to this. The two like charge tracks are assigned the π mass and the third track
the mass of the K.

The following selection criteria are then applied to the candidate D±:

• The D± raw mass (before vertex constraining) lies between 1.81 > and
< 1.92.

• The angular separation in φ between the D flight path and the K daughter
is ≤ 1.5 radians.

• The D daughters lie in a cone defined by ∆R =
√

(∆η2 + ∆φ2) < 2.

• The transverse momentum of the D, is ≥2.4GeV

Once the D± candidates are reconstructed, a fourth track with charge opposite
to that of the π daughters of the D± is combined and constrained to a common
vertex along with all the daughters. This is the candidate B0, the following
selection criteria are applied:

• The mass of the B0 lies between 5.23 and 5.5 GeV.

• The Lxy of the B0 is > 350µm and < 1cm.

• The B0 vertex χ2 is < 30.

• The PT of pion from B ≥ 1 GeV.

• Impact Parameter of B < 80µm.

• The calculated error of the Bs proper decay length σcτ < 100µm.

• The angular separation in φ between the B0 and its daughter pion is ≤ 3.0
radians.
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• The momenta of the D and π from the B lie within a cone defined by
∆R =

√
(∆η2 + ∆φ2) < 2

• All the B daughters have z0s within 5cm of each other.

• The PT of the B is ≥5.5

In addition to the criteria listed above we note that the B0 sample is contam-
inated by the decay modes ΛB → ΛCX and Bs → DsX, these are vetoed and
their removal is accomplished by the following criteria:

Contamination from ΛB → ΛCX decays occurs when we assume a proton from
a ΛC → pπK decay is a pion from a D± decay. To remove ΛBs we remove
the daughter ΛC : we reconstruct the D as if it were a ΛC by assuming the
pion is proton. We look at both combinations that are possible and if the final
mass is within 25MeV of the ΛC mass we remove the candidate from the sample.

Contamination from Bs → DsX decays occurs when we mis-reconstruct a
D±

s → φπ± (φ → K+K− ) as a D± → π±π±K∓ by mis-assigning track masses.

We remove D±
s by rejecting candidate D± whose oppositely charged daughter

tracks are consistent with coming from a φ with φ → K+K−.

We remove those candidates where an oppositely charged daughter track pair
of the D± yields an invariant mass within 10MeV of the φ mass when each
daughter is assigned a kaon mass.

11 Testing the technique: Data Monte-Carlo Mix

We have already demonstrated that the method of removing bias works in signal
only Monte Carlo and we have detailed the full PDF necessary to extract a
lifetime from real data in section 2

In this section we demonstrate that using the PDF derived from our technique
in a multivariate log likelihood minimization extracts the correct lifetime when
we mix signal only Monte-Carlo with background from real data. We do this
for each decay mode for which we have results using the data.

All the results quoted for Bu are for 15000 signal-only Monte-Carlo mixed with
15000 background events from data. The B0 fits in this section were done with
1000 signal from Monte Carlo and 20000 events background events.

The real-data background events come from the upper sideband of the recon-
structed decay and the masses of the events are reassigned so that they are
distributed over the full mass range that we expect to perform our fit over.
We believe that data in the upper sideband is a close approximation to the
background underneath the peak, as background should consist mainly of com-
binatorics and analysis cuts are chosen to remove physics background.
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For the Bu and B0 decays we have taken events in the mass region 5.37 and
6 GeV to be the upper sideband. These events have their mass reassigned
randomly into the fit region 5.23-5.5 GeV. The masses are distributed according
to a linear polynomial of negative slope.

The MC and data are mixed together to make one sample and again the overall
signal to background ratio is chosen so that it is realistic of the mode we are
testing.

The fit is performed over the mixed sample, and the fit result is compared to
that of the same Monte Carlo sample only for a consistency check. We have
found very good agreement between the results of our fit on signal-only Monte-
Carlo and for a mixture of data-background and signal only Monte-Carlo. Only
once we have performed this test do we move on to looking at data-only.

The results of these tests now follow.

11.1 Data Monte-Carlo Results: B± → D0π±, D0 → K∓π±

We begin by fitting a sample of signal only Monte-Carlo for a mode. The sample
contains 15000 B± → D0π± events. We obtain an answer of 494.7 ± 7.2µm,
the Monte-Carlo was generated with a lifetime of 496 µm in this mode.

We then mix this sample with 8 different background samples and fit the lifetime
using a full likelihood describing background as well as signal. The results are
tabulated below. In terms of the σ deviation we quote it is calculated as the
deviation from the fit with MC only. Adding the background increases the
statistical error on the lifetime. We use the increase in the statistical error as
the size of the error against which the σ deviation is calculated. What we want
to see in this test is if there is some problem with the method that shifts the
lifetime from the original background free lifetime. We see that the shifts are
small. A more accurate systematic is calculated using a pull study.

Sample Lifetime with Background (µm) Lifetime from Signal Only (same) (µm) σ deviation
1 499.1 ± 8.1 494.7 ± 7.2 1.18
2 498.1 ± 8.1 494.7 ± 7.2 0.91
3 490.4 ± 8.1 494.7 ± 7.2 -1.15
4 496.4 ± 8.0 494.7 ± 7.2 0.48
5 492.9 ± 8.0 494.7 ± 7.2 -0.51
6 499.1 ± 7.9 494.7 ± 7.2 1.35
7 497.5 ± 8.0 494.7 ± 7.2 0.80
8 501.7 ± 8.3 494.7 ± 7.2 1.62

The Cabbibo suppressed mode B± → D0K± is not taken into account for this
study. We point out to the reader that the Monte-Carlo signal only sample best
fit lifetime is less than 1 σ away from the generated lifetime and that mixing in
background and fitting signal and background still retains this good agreement

38



11.2 Data Monte-Carlo Results: B0 → D∓π±, D0 → K∓π±π±

Once again we begin by fitting a sample of signal only Monte-Carlo for a mode,
with a sample of 10000 B0 → D∓π±, D0 → K∓π±π± events. We obtain an
answer of 465 ± 5µm, the Monte-Carlo was generated with a lifetime of 464 µm
in this mode.

We then mix this sample with 3 different background samples and fit the lifetime
using a full likelihood describing background as well as signal. The results are
tabulated below.

Sample Lifetime with Background (µm) Lifetime from Signal Only (same) (µm) σ deviation
1 478.8 ± 8.6 465.3 ± 7.5 3.2
2 457.4 ± 7.9 465.3 ± 7.5 -3.18
3 457.1 ± 7.8 465.3 ± 7.5 -3.8

The Cabbibo suppressed mode B0 → D±K∓ is not taken into account for
this study. In real data this B0 mode has background under the peak from
ΛB → ΛCX and B0

s → D±
s π∓, the removal of these modes via the appropriate

vetoes is described in section 10.

11.3 Pull Study

While Table 11.1 and 11.2 show that the fit work in a realistic situation with
signal and background present there is of course some deviation from the truth.
To investigate this further and to find out if there is a systematic shift induced
by this method we carry out a pull study.

We would like to make this study as realistic as possible, especially in trying
to match the distributions of acceptance functions of signal and background
as they would be in real data. We would also like to run our pull study over
samples where the sample size is similar to what we see in Data, roughly 20,000
signal events to 30,000 background events in the mass range 5.23 - 5.5 GeV.

To get a good estimate of any systematic shift in best fit lifetime we would like
to carry out approximately 400 different tests. This however would require 8M
Monte Carlo events that pass our selection cuts, which we do not have. To
overcome this we employ a method similar to the bootstrap method.

We have at our disposal 70K MC signal events that pass our analysis cuts and
125K events from the upper sideband of our B0 reconstruction. We take 20K
Monte Carlo events at random from the large MC sample. The same event can
be chosen more than once. We would also like to make the mass distribution of
these signal events look more like what we see in data and so reassign masses to
the chosen MC events according to the double Gaussian model. The parameters
for this Gaussian model are taken from the B0 data mass fit.
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Figure 17: A pull distribution of the best fit lifetime mean= 0.048 ± 0.039
width= 1.20± 0.03

We add to this chosen MC sample 30K background events. These are taken at
random from the sample of upper sideband and once again the same event can
be chosen more than once. The masses of the background events also need to
be reassigned so that they lie along the full mass range of the fit. The masses
are reassigned according to a linear polynomial of negative slope and once again
the slope we use to generate these new masses is similar to what we see in data.

We mix the chosen MC and background events and run them through the fitting
procedure. The fitter does not know which events are signal and background.
We look at the pull of the lifetime from the best fit value (464µm), and fit for
a Gaussian.

We have just over 1000 sample fits. The plot for pulls is shown in 17. The
fit for the mean and width of this Gaussian are 0.048 ± 0.04 and 1.20 ± 0.03
respectively. While the width of the fitted gaussian is greater than one, we
must remember that the statistical errors used here have been underestimated
as we have not taken into account the statistical error from the mass fit. In
the B0 we find that this causes an increase in statistical error of 12 percent,
and so we are not concerned that the fit here shows a slightly wide gaussian.
The mean of the distribution is 0.048 ± 0.04 which is consistent with 0. For
the purposes of assigning a systematic in lifetime we need to multipy the mean
of the distribution by the error. The mean error is just under 6 microns and
so for as systematic we estimate 0.3 ± 0.2µm. To be conservative we apply a
systematic of 0.3µm.

12 Fits to Data

We present in this section our results for the charged and neutral lifetimes.
Statistical errors only are quoted. The following section discusses our systematic
errors, and following that we show the combined statistical and systematic error
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along with the charge to neutral lifetime ratio.

12.1 B−u → D0π−

The analysis cuts and the data used for this measurement are described in
section 10. We perform the lifetime fit and obtain the B+ lifetime as 488.5 ±
6.2µm. The statistical error quoted here includes the propagated error from the
mass parameters as described in 13. The statistical error propagated from the
mass fit is 1.6µm which is added in quadrature to 6.0µm from the time fit to give
the total statistical error as 6.2. We find a signal yield of 25180± 340 and show
the mass and lifetime projections in figure 18. We also show the distributions
of fisher scalar and the fitted function for signal fraction as a function of fisher
scalar. While there are some fluctuations in the extremes of the distribution we
must note that there are also few events in this region. These plots are shown
in 19.

The best fit parameters for the B± decay are presented here. We have assumed
that the 18 order Lagrange interpolating polynomial fit to the Fisher scalar is
of less interest to the reader than the numbers describing the mass and lifetime
signal and background parameters, the Fisher scalar fit is shown in the appendix
17.1 for the interested reader. Figure 19 shows the fit parameters displayed
pictorially. In table 12.1 we show the results of the fit of the mass distribution
displayed in figure 18. The parameters M1, M2, σM1, σM2, f1, relate to the
signal the terms are the masses, widths of the two gaussians and the fraction
of events in the first gaussian respectively. The parameters fs and mbck are
the slope of the mass background and the fraction of events that are signal
respectively.

Parameter Best Fit value ± Error
M1 5.271± 0.003
M2 5.277± 0.001
σM1 0.0246± 0.0041
σM2 0.0140± 0.0019
f1 0.528± 0.223
fs 0.509± 0.007
mbck −0.1686± 0.0016

Next we tabulate the lifetime results, we tabulate a best fit B± lifetime λB± ,
the first and second background lifetimes λ1 and λ2 and the weight of the
first lifetime f1, and the weight of the prompt component fprompt. We also
include here the fit values for the single track SVT efficiency for signal and
background,Esignal and EBkg respectively.
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Figure 18: The mass and lifetime projections for Bu, in 1fb−1 of data. The
lifetime is 488.5±6.2µm. In the lifetime projection the blue line shows the total
cτ projection, while the red is the signal component and the other colours show
the background contributions.
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Figure 19: The overall distribution of fisher scalar is shown at the top. The
lower plot shows the Lagrange Interpolating Polynomial which is the best fit to
signal fraction as a function of fisher scalar.
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Parameter Best Fit value ± Error
λB± 488.5± 6.0
λ1 63.2± 2.4
λ2 219.6± 4.7
f1 8.24± 0.51
fprompt 2× 10−7 ± 0.02
ESignal 0.695± 0.005
Ebkg 0.594± 0.010

No signal fraction is presented in this table, this is because the signal fraction
is fit in each of 18 bins of the Fisher scalar and is presented in the appendix.

12.2 B0 → D−π+

The analysis cuts and the data used for this measurement are described in
section 10. We perform the lifetime fit and obtain the B+ lifetime as 454.3 ±
6.4µm. The statistical error quoted here includes the propagated error from the
mass parameters as described in 13.The statistical error propagated from the
mass fit is 2.8µm which is added in quadrature to 5.7µm from the time fit to give
the total statistical error as 6.4. We find a signal yield of 20400± 430 and show
the mass and lifetime projections in figure 20. We also show the distributions
of fisher scalar and the fitted function for signal fraction as a function of fisher
scalar. While there are some fluctuations in the extremes of the distribution we
must note that there are also few events in this region. These plots are shown
in 21.

The best fit parameters for the B0 decay are presented here in a similar fashion
to the B±. Once again we have assumed that the 18 order Lagrange interpolat-
ing polynomial fit to the Fisher scalar is of less interest to the reader than the
numbers describing the mass and lifetime signal and background parameters,
the Fisher scalar fit is shown in the appendix 17.1 for the interested reader.
In table 12.2 we show the results of the fit of the mass distribution displayed
in figure 20. The parameters M1, M2, σM1, σM2, f1, relate to the signal the
terms are the masses, widths of the two gaussians and the fraction of events
in the first gaussian respectively. The parameters fs and mbck are the slope of
the mass background and the fraction of events that are signal respectively. We
also include here the fit values for the single track SVT efficiency for signal and
background,Esignal and EBkg respectively.

Parameter Best Fit value ± Error
M1 5.269± 0.003
M2 5.276± 0.003
σM1 0.0323± 0.0049
σM2 0.0143± 0.001
f1 0.471± 0.096
fs 0.4113± 0.0083
mbck −0.1662± 0.0020

Next we tabulate the lifetime results, we tabulate a best fit B0 lifetime λB0 , the
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Figure 20: The mass and lifetime projections for B0, in 1fb−1 of data. The
lifetime is 454.3± 6.4µm.In the lifetime projection the blue line shows the total
cτ projection, while the red is the signal component and the other colours show
the background contributions.
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Figure 21: The overall distribution of fisher scalar is shown at the top. The
lower plot shows the Lagrange Interpolating Polynomial which is the best fit to
signal fraction as a function of fisher scalar.
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the first and second background lifetimes λ1 and λ2 and the weight of the first
lifetime f1, and the weight of the prompt component fprompt.

Parameter Best Fit value ± Error
λB0 454.3± 5.7
λ1 73.9± 1.5
λ2 224± 6
f1 16.3± 1.1
fprompt 2x10−5 ± 0.005
ESignal 0.734± 0.004
Ebkg 0.668± 0.005

No signal fraction is presented in this table, this is because the signal frac-
tion is fit in each of 18 bins of the Fisher scalar and this fit presented in the
appendix 17.1

13 Comparison of Fit projection and Data

In this section we present a comparison of the fit projection to the data. We
start by looking at the fit projection of Monte Carlo signal only in high statistics.
This is shown in 22 along with the residuals between the fit projection and
ctau distribution in the Monte Carlo. Overall the residuals are small and show
that the acceptance function technique is correcting for the bias imposed by
the trigger. Figure 23 shows the fit projection and residuals for a typical
Monte Carlo signal plus upper sideband mix. It shows that there are some
large residuals which are coming from the background model. In this analysis
we calculate the acceptance function for an event which is the points along its
path of travel at which the event could have been accepted by the trigger. For
real B mesons this has a real and tangible meaning, however for an event that
was in fact combinatoric background the meaning of the acceptance function is
less clear. We have also found that if we wish to use event by event acceptance
functions for the signal PDF we must also use them for the background. However
this makes background cτ distribution difficult to model perfectly as each event
comes with its own acceptance function. We model the background as a sum
of exponentials with the τ and weight of these components allowed to float in
the fit. Figure 24 shows the residuals for the fit to Data for the B0. We see
that the residuals follow the same pattern as that for the realistic Monte Carlo
plus sideband mix. By adding extra background components we do see a small
improvement in the residuals but no change in the lifetime result. From the
realistic pull study we see no bias coming inherently from the method. For all
the fits in the pull study we can compute a chi-squared type quantity which
is the sum of the squares of the residuals divided by the number of bins. A
histogram of these chi-square type quantities is shown in figure 25. The same
number is computed for the fit to Data and it is 2.01 which lies just to the left
of the center of the distribution of chi squares from the pull study. There does
not appear to be anything in the Data that is not also in the Pull study. Hence
although the background model isn’t perfect we conclude that it is good enough
to allow the extraction of the signal lifetime which is the quantity of interest.
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Figure 22: 70K events, MC signal only fit
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Figure 23: A typical Lifetime projection from a MC + upper sideband mix
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Figure 24: The lifetime projection for B0 Data fit
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14 Systematic Errors

14.1 Systematic Due to Silicon Misalignment

The alignment group quotes the systematic error on the alignment of the sili-
con system as being 50µm. The usual way in which the effect of a misaligned
detector has upon a lifetime result is to simulate the misaligned detector. One
simulates with one alignment table and estimates track parameters using an-
other, observing the effect upon the fitted lifetime.

What others have done Since the selection of events in dimuon channels
is largely independent of aligment (apart from very loose cuts like χ2), any
differences due to selection are assumed to be statistical fluctuations and these
are zeroed by fixing the selection and varying only the alignment constants.
Event selection is performed using one alignment table; then, the tracking fits
are redone using a different table. The wafer misalignments produce hit slewing
which propagates to tracks, then to vertex positions, to proper decay times and
ultimately to the fitted B lifetime. Since track refits can be performed in the
analysis step, the entire systematic study can be conducted without even a rerun
of production.

Why we cannot do that. The effect that a misaligned detector has upon the
lifetime measurement extracted in this analysis, and the treatment we use to
estimate it, differs from previous analyses in several ways.

• The selection of events by the hadronic B trigger is affected by the align-
ment. This is not the case in analyses in which lifetime distributions are
unbiased by the trigger.

• Estimating the effect requires that the misalignments be introduced into
the offline tracking but also into the SVT.

• Since now the selection of events changes, the samples used to estimate
the lifetime before and after the shift vary slightly. If the samples are not
100% correlated, then any shift in the central value induced by the offline
tracking must be considered to have a statistical error coming from the
sample difference.

A simple thought experiment serves to illuminate the last issue. If the wafer
positions are changed, some events will enter or leave the sample. In case the
events that are gained/lost all come from the front edge of the acceptance, we
would say that the alignment was affecting the lifetime. In case the events are
gained/lost at random, without regard to their lifetime we would see a different
measured lifetime for sure but we would have to say that the change in the
measured value was due to statistical fluctuation.

One could approach this problem by determining the degree to which the two
measurements were statistically correlated. Our approach is to determine,
through a procedure we describe below, the change in fitted lifetime value due
to alignment together with its statistical error. This will be quoted as δ ± σ.
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Figure 26: Sample 1 ovelaps with Sample 2. We consider Sample A (unique to
selection 1), Sample B (unique to selection 2) and Sample C (common to both
selections).

Needless to say, the procedures by which a misaligned detector is introduced
into the SVT is a non trivial task both for us and for the CDF analysis farm.

14.2 The Statistical Error in the Alignment Shift

Two measurements of a quantity performed with overlapping samples are ex-
pected to show differences due to statistical fluctuations. Here, we estimate the
size of those differences (“σ”, in the discussion above). Let’s call the first set of
events “Sample 1” and the second set of events “Sample 2”. Furthermore, we
call their intersection “Sample C” (for common); those are the events common
to both selections.

Furthermore, we call the events unique to the first selection “Sample A” and
those unique to the second selection “Sample B”. The event selections can be
visualized with Venn diagrams, as if Fig. 26.

Suppose that unbinned maximum likelihood fits to Samples 1 and 2 return
measured values x1 ± σ1 and x2 ± σ2. These measurements can be each be
considered as weighted average results. x1±σ1 could be obtained as a weighted
average of an estimate of x within sample A and an estimate of x within sample
C. We’ll denote these estimates as xA ± σA and xB ± σB . The weight w of a
the estimate is defined as

w =
1
σ2

Then,

x1 =
wAxA + wCxC

wA + wC
(52)

w1 = wA + wC (53)
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And

x2 =
wBxB + wCxC

wB + wC
(54)

w2 = wB + wC (55)

This composition is useful because, unlike samples 1 and 2, samples A, B, and
C are disjoint so they are statistically independent. Notice that we do not claim
that the estimate of x within samples A, B, or C is physically meaningful. We
merely are stating that they relate to the measurements within samples 1 and
2 as stated above. (E.G: the average height of students in a class is certainly
the average of the average of the short students and the average of the tall
students). For this reason we shall refrain from calling estimates of x in samples
A, B, or C as measurements; we refer to estimates of x in samples A, B, and C;
and measurements of x in samples 1 and 2.

We are interested in the difference ∆ = x1 − x2 between measurement 1 and
measurement 2. We can write it in terms of the estimates within samples A, B,
and C in the following way:

∆ = x1 − x2 = (56)
wAxA + wCxC

wA + wC
− wBxB + wCxC

wB + wC
(57)

The advantage in doing so is that we know the degree of statistical correlation
between xA, xB , and xC is zero, wheras we do not know the degree of correlation
between x1 and x2 at all.

Our goal is to determine the σ∆, the error on the measurement difference. It
can be got from a straight propagation of errors using the above expression. We
compute

σ2
∆ =

∑
i=A,B,C

(
∂∆
∂xi

2

σ2
i

)
(58)

Carrying out the algebra, we obtain:

σ2
∆ =

wA

(wA + wC)2
+

wB

(wB + wC)2
+

wC(wB − wA)2

(wA + wC)2(wB + wC)2
(59)

Two limiting cases are of interest. When the events do not overlap at all,
wC = 0, and one sees easily that σ2

∆ = σ2
A + σ2

B . When all of the events are
common wA = wB = 0 and σ∆ = 0. These are precisely what one expects.
We shall use this formula below to obtain the statistical error on the alignment
shift.
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Sample Size (events) τ (default) (µm) τ (out) (µm στ (µm)
A (default only) 26.4K 443 6
B (Move out) 28.2K 438 6
C (Common) 38.0K 533 537 7

Table 2: Raw lifetime estimates within samples (A,B,C). Sample A consists of
events selected with default alignment, only; sample B of events selected with
wafers moved out; and sample C of common events.

14.3 Estimate of the Alignment Systematic.

The lifetime shift has been evaluated by shifting the wafers outwards by 50
µm. We simulated B+ → D0π+, simulating the detector and the SVT trigger,
reconstructing the events and applying the lifetime estimators to selected events.
The input lifetime was 496 µm. The procedure to simulate the misaligned SVT
is detailed in section 16.

The events which are common to each selection are about 60% of the selection.
The raw numbers are shown in Table 14.3. Samples A and B contain events
lying at the edge of the acceptance, so the low value of the lifetime estimate for
these subsamples is expected. Sample C is depleted in such events so the high
lifetime seen in that subsample is also expected. Sample 1, which is A∪C, gives
a measurement of 495 ± 5 while sample 2, B∪C, gives 493±5, so we observe a
downward shift of two microns.

Using the formulae derived in this note, we determine the shift to be -2 ± 5
µm. The direction of the observed shift is important because the lifetime goes
down when the wafers are moved out. While more agressive estimates of the
alignment systematic error might be justified in this situation, we choose the
conservative approach and quote the systematic error due to alignment as ± 5
µm.

14.4 Another approach to evaluating a systematic error
due to Silicon Misalignment

We have already described how full detector and trigger simulation MC can be
used for evaluating a possible systematic error in lifetime due to a misalignment
of the detector ??. This technique is computationally intensive and we have
describe here a method to evaluate the same error using a toy Monte-Carlo
technique.

A toy Monte Carlo of approximately 1 million simulated B0
s → Ds±π∓ are used

with lifetimes of 465 (Bs) microns and 147 microns (Ds) and a PT distribution
based on realistic BGEN CDF Monte-Carlo with full detector and trigger sim-
ulation is used (this is the only input from full detector simulation). The D±

s

decays to π±φ and φ → K+K−. The choice of decay is arbitrary and has a
similar topology to B0 → D±π∓.

By using geometry we calculate the effect of radially moving all Silicon wafers.
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The new impact parameter is give by:

d0shifted = d0true + R · sin(φw)

in this expression d0shifted is the impact parameter recalculated due to the
radial movement of the wafers, d0true is the true, generated impact parameter
of the track. The angle φw is the track φ0 but measured from the bisector of
a wedge to the origin of the co-ordinate system (also assumed to be the beam
spot), thus φw lies between ±αw

2 , here αw is defined as the angle subtended by
a silicon wedge at the center of the co-ordinate system. Finally R is the radial
shift, in or out. The secondary vertex positions are all re-calculated analytically
taking the shifted impact parameters into account.

No effect of the alignment on the individual track φ0 is assumed. The decays
are required to pass the L2 B CHARM (medium PT ) trigger path cuts.

We move the detector out by 50 microns and fit a lifetime of 468+- 0.75 microns,
the shift is 3 ± 0.75 microns and we assign a sytematic uncertainty of 3 µm due
to a possible detector residual misalignment, this estimate is conservative.

14.5 Systematic error due to the single-track efficiency of
the SVT

.

The MC-free method assumes that the single-track finding efficiency of the SVT
is flat between for 0< d0 1000µm where d0 is the impact parameter measured
by the SVT. However we observe that there is some deviation from the flat
hypothesis. To estimate the effect of the deviation on a lifetime measurement
we reject events according to the deviation and estimate a systematic error.

A signal only sample from B±u → D0π± Monte Carlo is used and a description
of the evaluation of the systematic error now follows.

14.5.1 Determining the single track finding efficiency of the SVT

The single track efficiency of the SVT is found by dividing the number of tracks
found by the SVT by the number of tracks found by the offline as a function of
the offline impact parameter d0.

Offline tracks from 5.1.3 Monte Carlo of the decay B±u → D0π± are selected
according to to the following criteria:

i . The number of Silicon hits in R-phi (Ax-hits) should be ≥ 3

ii . The track transverse momentum PT ≥ 2 GeV

iii . and track | η | ¡ 1.1
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The final expression for SVT single track efficiency is given by the expression:

εSV T (d0) =
NSV T (Ax− hits ≥ 3 : PT ≥ 2GeV, | η |< 1.1)
NOFF (Ax− hits ≥ 3 : PT ≥ 2GeV, | η |< 1.1)

(60)

We fit this expression to the function :

εSV T = p0 × erfc(
d0 − p1

p2
) (61)

where erfc is the complementary error function, d0 is the offline impact pa-
rameter and p0, p1 and p2 are free parameters. The best fit shown in 27
gives values for the free parameters of p0 = 0.261134 = ±0.0516650, p1 =
0.156018e± 0.0180816, and p2 = 0.0428187± 0.028783.
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Figure 27: Single track efficiency of the SVT

14.5.2 Determination of the systematic error

Using the parameterization described in the previous subsection we proceed to
calculate the systematic error in the lifetime measurement. The first step is
to measure the lifetime of the signal sample assuming-as the MC-free method
does-that the single track finding effieciency of the SVT is flat. Using 13670
events we obtain a best fit lifetime of 484 ± 7.58 µm. Let us call this sample of
events sample A, with best fit lifetime and error: x̄A σA respectively .

Next we do the fit whilst randomly rejection events using the efficiency function:
using the impact parameter d0 of each track we evaluate the efficiency function

56



εSV T (d0) and generate a uniform deviate between 0 and 1. If this deviate lies
between the difference between the y-intercept of this curve and its value at d0

we reject it. This gives us a slightly smaller sample of 13631 events, yeileding
a best fit lifetime of 482 ± 7.50 µm. Let us call this sample B with best fit
lifetime and error: x̄B σB respectively.
Let us now designate the rejected sample of 39 events by R and the best fit
lifetime and error in this sample by x̄R σR respectively. Note that we have
not fit a lifetime in such a small sample but the utility of this designation will
become apparent shortly.

The shift in best fit lifetimes of samples A and B is not the systematic error
since the two samples A and B are highly correlated. We need to know the
uncertainty of this shift before we are able to estimate what the systematic
error is. In order to do this an approach similar to that used for calculating
the systematic error due to misalignment of the detector which contains highly
correlated samples of events as well. We begin by writing down the expression
for the uncertainty on the shift ∆ (uncertainty is denoted by σ∆):

σ2
∆ = (

∂∆
∂x̄A

)2.(σA)2 + (
∂∆
∂x̄B

)2.(σB)2 + (
∂∆
∂x̄A

)(
∂∆
∂x̄B

).Cov(x̄A, x̄B) (62)

we cannot determine the correlation Cov(x̄A, x̄B) so we write down the expres-
sion for the shift x̄A − x̄B in terms of the two uncorrelated samples R and B
denoting their weights by wR = 1

σ2
R

and wB = 1
σ2

B
respectively:

∆ = x̄A − x̄B =
wB .x̄B + wR.x̄R

wB + wR
− x̄B (63)

from this expression we can derive the uncertainty:

σ∆ =
wR

wB + wR
×

√
w−1

R + w−1
B (64)

We can estimate wR by using the relative size of sample R compared to sample B,
using this and the above expression we obtain σ∆ = 0.4µm as the uncertainty of
the shift ∆ (2µm). To be conservative we assign a systematic error of 2 microns
due to our parameterization of the SVT single-track finding efficiency.

14.6 Systematic Error due to Resolution Function

The Resolution function is the model we use to describe the distribution of
the σcτ errors. Our model uses a Gaussian and this is convoluted with the ex-
ponenetial for lifetime. We have to consider that this description is not perfect.
From the exclusive B lifetimes analysis using Jpsi modes (CDF Note 8524) it
is found that the errors are not distributed according to a Gaussian but there
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exists a longer tail. On average they find that the tail is modelled by a Gaussian
of width 3 times the main Gaussian and comprises a fraction of 10%.

To test what effect this may have in our model we use our signal toy generator,
and generate gaussian distributed errors but 10% of the time we increase them
by a factor of 3. The events from the toy simulation are then fit using only our
single gaussian resolution model. For 1M events we see a liftime shift from the
input truth as +1.6 ± 0.7. We therefore assign a systematic of 1.6 microns as
the systematic due to modelling the resolution errors by a single gaussian.

14.7 Systematic Error due to binning of Acceptance Func-
tions

As we have decribed earlier in section 8 in order to differentiate acceptance
functions of signal from background, we use the Fisher discriminant technique,
in order to obtain the matrix of weights we have to transform each calculated
acceptance function into a vector by binning it. The heights of various bins
contain the information used to make the discrimination possible.

The acceptance functions have different shapes depending on the number of
tracks with which it is possible to form a trigger. The more tracks in a final
state the more possible combinations that can pass the trigger, and hence the
more structure the acceptance function has, this is described in section 8.3.1.
The choice of the number of bins given a particular decay is discussed in section
8.3.1. We have found that we can vary the number of bins and still discriminate
between signal and background using this technique. To investigate whether
there is any systematic effect due to a choice of the number of bins we fit the
data and vary the number of bins in both the B0 and B± samples. We record
the resulting shifts in the best fit lifetime and estimate a systematic uncertainty.

A table for both decays is given below. For the B± we have quoted the final
results from 20 bins and 10 bins for the B0. All shifts recorded are relative to
these measurements.

Decay Mode Acceptance Function Bins Best Fit Lifetime (µm) Shift (µm) δsystematic (µm)
20 488.5 ± 6.1 (quoted) 0

B± → D0π∓ 15 487.2 ± 6.1 +0.7 ± 1.3
17 489.2 ± 6.1 -1.3
10 454.3 ± 5.7 (quoted) 0

B0 → D±π∓ 9 456.0 ± 5.7 +1.7 ± 1.7
11 454.3 ± 5.7 0

In this table the word “quoted” indicates that this is the final result and all
shifts are calculated from this number.

To be conservative we assign a systematic error of ± 1.3 µm for the B± and ±
1.7 µm for the B0, these correspond to the largest shifts that we see in varying
the binning of our acceptance functions.
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14.8 Systematic error due to using acceptance funtions
and using fisher discriminants to find the signal prob-
ablility for each event

This systematic error can be thougth of as the shift introduced by the method
of unbiasing the data itself. We take the systematic error found by doing the
pull study. As described in section 11.3 we assign a systematic of 0.9 microns.

14.9 Systematic error due to fixing the scale factor of cal-
culated proper lifetime error

The Monte-Carlo free method of measuring hadronic lifetimes uses event by
event calculated errors σcτ on the proper decay length cτ as do all other life-
time analyses at CDF. These are returned from the C++ wrappered vertex
fitting program CTVMFT. From Monte-Carlo pull distributions we observe a
scale factor of approximately 1.1 ±0.03, which means that the errors returned
from CTVMFT have to be scaled by an appropriate amount.

The Lxy cuts made in this analysis (section 10) leave very little of a prompt
component in background and this is not enough to allow a parameter describing
the scaling of σcτ as is customary in lifetime analysis that have sufficient prompt
background. For this reason all event by event errors are scaled by a factor of 1.1.

In order to estimate a possible systematic error due to this fixing we change the
scale factor to 1.2 and 1.3 and remeasure the B± and B0 lifetimes, the shifts are
then used to estimate a systematic error due to the fixing of the scale factor.

We tabulate our results below and ask the reader to note that our assignment
of systematic error is conservative.

B Meson σcτ scale Fit Lifetime Shift (µm) δsystematic (µm)
1.1 488.5 ± 6.0 0 (quoted)

B± 1.2 488.2 ± 6.1 -0.3 ± 0.5
1.3 488.0 ± 6.0 -0.5
1.1 454.3 ± 5.8 0 (quoted)

B0 1.2 453.9 ± 5.8 -0.4 ± 0.9
1.3 453.6 ± 5.8 -0.9

In this table the word “quoted” indicates that this is the final result and all
shifts are calculated from this number.

We assign a systematic error of ± 0.3 µm to the B± lifetime and ± 0.4 µm to
the B0 lifetime due to possible variation in scaling of the event by event proper
decay length errors. We choose the shifts seen by a scale factor of 1.2 since even
this is far from what we expect from Monte Carlo and using the shifts from a
scale factor of 1.3 would be an overestimate.
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14.10 Systematic Error due to Background Parameteriza-
tion

We model our background in lifetime as the sum of a prompt component-
described by a Gaussian with a width equal to the event by event error and and
two exponentially decaying long lived components convoluted with an event by
event error. The prompt component fraction is allowed to vary as part of the
fit and comes out to be consistent with zero.

To evaluate a systematic uncertainty associated with a possible misparameter-
ization of the background we refit our data with three long lived components
instead of two for both decays. The results are tabulated below. The only shift
we see is for the B±.

Decay Mode Background lifetimes Best Fit Lifetime (µm) Shift (µm) δsystematic (µm)
B± → D0π∓ 2 488.5 ± 6.1 (quoted) 0

3 487.4 ± 6.1 -1.1 ± 1.1
B0 → D±π∓ 2 454.3 ± 5.7 (quoted) 0

3 454.3 ± 5.8 0 ± 1.1

In this table the word “quoted” indicates that this is the final result and all
shifts are calculated from this number.

To be conservative we assign a systematic error of ± 1.1 µm for both the decay
modes despite the fact that the only observed shift is in the B± decay.

14.11 Systematic Error due to fit of Fisher Scalar distri-
bution

A description of the Fisher scalar or Fisher discriminant distribution and its
motivation is given elsewhere 8. This scalar quantity is extracted from the vec-
tor of acceptance function bin heights and allows discrimination between signal
and background-like acceptance functions. The Fisher scalar distribution is fit
using interpolating Lagrange polynomials this is described in section 8.4. The
fit of the scalar allows an extraction of P(s— Fisher scalar) the probability that
an event is signal given a value of the Fisher scalar.

From Monte-Carlo data-mixes, we know that we if we bin the Fisher scalar by
15-20 bins we can get P (s|FisherScalar). See figure 13, the function found
matches the truth very well. For our data fits we have used 18 bins. We would
like to remind the reader that the order of Lagrange interpolating polynomial
needed to fit N data points is exactly N, this being an intrinsic quality of these
polynomials.

To see if there is a systematic error associated with our choice of number of
bins for the Fisher scalar distribution, we change this to 15 and 20 and see if
there is any shift in lifetime and estimate a systematic error accordingly. The
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final results quoted in this note have the number of bins set to 18 and the shifts
quoted in the table are from these.

Decay Mode Number of Bins Best Fit Lifetime (µm) Shift (µm) δsystematic (µm)
18 488.5 ± 6.1 (quoted) 0

B± → D0π± 15 488.5 ± 6.1 0 ± 0.1
20 488.4 ± 6.1 0.1
18 454.3 ± 5.7 (quoted) 0

B0 → D±π∓ 15 454.4 ± 5.7 0.1 ± 0.1
20 454.3 ± 5.8 0

In this table the word “quoted” indicates that this is the final result and all
shifts are calculated from this number.

We assign a systematic error of ± 0.1 µm for both the decay modes.

14.12 Systematic Error due to Inclusion of part of the
FSR tail and the Cabibbo supressed modes

In this subsection we examine whether there is any shift in lifetime caused by
the inclusion of the FSR tail and the Cabibbo suppressed modes as signal. We
do not separate these modes from the main signal peak. Any systematic we
expect to get from treating these the same as the main decay are expected to
be very small indeed. The reasoning behind this is that firstly there is a lower
mass cut at 5.23 GeV which cuts out most of the contribution of the FSR tail
and a large portion of the cabibbo supresed decay. Secondly these events are
still the charged or the neutral meson and so the lifetime of these events will
be the same as that of the main peak. The only difference is that the mass
has been underestimated in the case of a Cabibbo supressed decay since a Kaon
has been reconstructed as a Pion and in the case of the FSR contribution both
the mass and the transverse momentun are slightly underestimated since the
photons have not been reconstructed. The differences in any distribution will
have to be small otherwise the event will not pass the mass cuts. And finally,
since these events lie in the tail of the mass distribution the are not weighted as
heavily as signal as events lying in the centre of the main peak. A very small
change will occur in the lifetime distrubution due to this as the cτ is given by
LxyxMB

PT
and we use the events’ reconstructed mass.

To investigate any change this might lead to we use our Toy Monte Carlo sim-
ulator to generate events with the mass distribution that we see in Data. This
means that there are more lighter events than heavier and so we may expect
to see some slightly smaller cτ that may lead to a lower liftime. We generate
1M toy events and measure the shift from the truth as 0.4 ± 0.7. We assign a
systematic of 0.7µm.
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14.13 Summary of Systematic Errors

The sources of error are: due to possible misalignment of the SVT, choice of
scale factor for the proper decay length errors, a possible error due to our choice
of the number of acceptance function bins, a possible error due to our choice of
the number of bins for the Fisher scalar, a possible error due to the assumption
that the SVT single track efficiency is flat, a possible error due to the background
lifetime parameterization and finally a possible error due to the fitting method.
These have been evaluated separately for the B± and B0 decay modes.

Although we have presented systematic errors due to a residual misalignment of
the detector from two different methods, one involving a full detector simulation
14.1 and from a toy monte-carlo study 14.4, we note that the former study is
statistics limited and the latter is not. We therefore cite the systematic error
from the latter ( 14.4).

We present here a summary of all sources of systematic error for the B± decay
mode first.

The results for the B± mode are presented below:
Source Assigned Error µm
Misalignment 3.0
SVT single track Efficiency 2.0
Resolution Function 1.6
Fisher Vector 1.3
Background Parameterisation 1.1
Method Bias 0.3
Suppressed Mode inclusion 0.7
Resolution scale factor 0.3
Fisher discriminant model 0.1

We add these uncertainties for the charged B lifetime in quadrature and obtain
± 4.4 µm.

The systematic errors for the B0 mode are presented follow:

Source Assigned Error µm
Misalignment 3.0
SVT single track Efficiency 2.0
Resolution Function 1.6
Fisher Vector 1.7
Background Parameterisation 1.1
Method Bias 0.3
Suppressed Mode inclusion 0.7
Resolution scale factor 0.4
Fisher discriminant model 0.1

again we add these uncertainties for the neutral B lifetime in quadrature and
obtain ± 4.5 µm.
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15 Lifetime Ratio and Summary

In Summary we have made the following two measurements:

cτ(B±) = 488.5± 6.2(stat)± 4.4(syst)µm (65)

cτ(B0) = 454.3± 6.4(stat)± 4.5(syst)µm (66)

Theoretical prediction of lifetimes are caluclated in terms of ratios so it is inter-
esting to make the same calculation here. In taking the ratio we would like to
propagate the error correctly and take into account that a number of systemat-
ics are correlated for each mode, such as the alignment. To calculate the error
on the ratio we use the simple formula that calculates the error on y, if y is a
function of xa, xb

σ2
y =

[
dy
dxa

dy
dxb

]
× (Error matrix between xa, xb)×

[
dy
dxa
dy
dxb

]
(67)

In calculating the error matrix for systematic errors between the two measure-
ments we have assumed that the alignment error, the SVT efficiency and the
bias of the method will be the same for both modes.

We find

cτ(B±)
cτ(B0)

= 1.075± 0.020(stat)± 0.008(syst). (68)
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16 Appendix A: The Simulation of the Misaligned
SVT

We simulate events with wafers in their default position, and then simulate a
misalignment by introducing wafer slewing both in the track reconstruction and
in the SVT. Unfortunately this means rerunning the simulation of the SVT.
The simulation, including GEANT hit production, is carried out using wafers
in their default position (TABLE 160045 1 GOOD). Then ± 50 µm wafer shifts
are introduced into the SVT and into the Track reconstruction by using the
tables TABLE 160047 1 TEST and TABLE 160047 2 TEST). To introduce these
constants into the track fits is trivial: the proper alignment table is specified in
the .tcl file.

To introduce the constants into the SVT trigger is much more involved. The first
step is to distill the SVX geometry into a set of constants summarizing wafer
position. This happens within a special procedure (makergeo.csh) developed and
maintained by the SVT group. Makergeo is a script which runs an AC++-based
program that can be steered through .tcl files and the (mis)alignment tables are
introduced at that point. The output file containing the desired information is
given the .rgeo extension.

The SVT track fit operates by taking four hit positions plus two XFT param-
eters (φ0 and curvature c), forming a vector of input parameters and apply-
ing a linear transformation to those parameters. The constants used in this
transformation are determined using linear regression to simulated tracks. The
simulation, which is not to be confused with CDF’s full detector simulation,
simply generates particles across the detector acceptance in order to determine
the linear relationship between track parameters and hit positions. In order
to obtain “misaligned” constants, these tracks need to be recreated and the
regression repeated. The procedure to do this is called corrgen; it appears to
live only outside CDF’s version-controlled code management system, but can
be obtained through the SVT group. The output of “corrgen” is a file with the
“.fcon” extension, containing fit constants.

Finally, the new fit constants are introduced into the simulation via “mapset”
files; these contain pointers to the new .fcon files created in the previous step.
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Database Default Shift Out Shift In
Beam-x (µm) -1973.8 -1973.8 -1973.0 -1974.8
Beam-y (µm) 5152.8 5153.0 5148.8 5157.4
dx/dz (mr) 0.5598 0.5598 0.5605 0.5595
dy/dz (mr) 0.1739 0.1739 0.1738 0.1744

Table 3: Beamspot shifts induced by misalignment of silicon wafers.

This file is edited by hand, and the new file is introduced to the SVT simulation.

The alignment table used to generate the new SVT constants is presented to
the reconstruction procedures, specifically the track fits, via the .tcl file.

16.0.1 How the Beamspot Changes when the Silicon Detector is
Misaligned.

The misaligments we considered (a 50 micron displacement of all wafers in-
wards and outwards) produce a collective effect on the beamspot position. The
collective motion of such detectors induces an apparent shift of the beampsot.
The plot of d0vsφ, used to obtain the beam spot position, changes amplitude
when the wafers move out or in. We take account of this effect by re-doing the
beamspot measurement, introducing the modified beamspot both into the SVT
simulation and into the event reconstruction.

The study was performed using stiff muons (50 GeV) in order to obtain high
impact-parameter resolution for each event and thereby enhance the statistical
power of the events we generated. The statistical power was further ehanced
by artificially shrinking the lateral size of the beamspot to one micron. The
beamspot was fit to default alignment and to the two misaligned configurations,
using an unbinned maximum likelihood fit.

Table 3 shows the fitted beamspot positions. In addition to the beamspot
positions and slopes determined from our procedure, we include in the table
the numbers coming from the database; these are to be compared with the
beamspot position we determine for the default position. The discrepancy is at
the submicron level. This gives us confidence that the values we extract for the
apparent beasmpot position in the misaligned detector is also accurate. When
the wafers are shifted out (in) by 50 microns, the apparent displacement of the
beamspot from the center of the detector decreases (increases) by about 4-5
microns or 0.1%. A crude scaling argument would predict that the effect would
be less than the wafer displacment divided by the wafer position, or (50 µ) /
2.5 (cm) = 0.2%. The D0 vs φ0 plots using both default beam positions and
the apparent beam position as determined from our fits are shown in Figs. 28,
29, and 30

We noticed another effect: the the resolution deteriorates when the wafers are
moved. This increases the apparent size of the beam. This effect vanishes at
the center of the wafer and becomes more pronounced on each side of the wafer.
The overall size of the effect on D0 is aproximately 30 microns, peak-to-peak.
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This effect. which is a D0 distortion due to the collective shift of wafers, is in
fact larger that than the overall shift of the beamspot. It has a significant effect
on the event selection, migrating events in and out of the acceptance.

In principle, one could hope to use the observed flatness of CDF’s beamspot
to put an upper limit on the amount of distortion in the real SVX; in prac-
tice however we interpret the alignment group’s “50 micron” prescription as a
characterization of magnitude of possible alignment effects, so, we consider the
two cases we study (50 µm in and 50 µm out) as our benchmark worst case
scenarios.
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Figure 28: D0 vs. φ0 plot after correction for the beamspot. Events are single
muons at 50 GeV. Events are simulated with tracks at their default positions
and reconstructed in the same way.

We can also make the plot of the SVT D0 vs φ0, using SVTD banks after the
beamspots determined by our procedure have been loaded into SVTSIM. This
is shown in Fig 31. This plot is sculpted by the efficiency of the hit-finding and
track-finding, and it is difficult to draw conclusions from this plot. However it
does appear to rule out large shifts in the SVT due a mismatch between the
alignment table and the beamspot numbers fed to svtsim.
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Figure 29: D0 vs. φ0 plot after correction for the beamspot. Events are single
muons at 50 GeV. Events are simulated with tracks at their default positions and
reconstructed with wafers moved out, by 50 µ m. Top: the default beamspot
position is used. Bottom: misaligned beamspot position is used.
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Figure 30: D0 vs. φ0 plot after correction for the beamspot. Events are single
muons at 50 GeV. Events are simulated with tracks at their default positions
and reconstructed with wafers moved in, by 50 µ m. Top: the default beamspot
position is used: Bottom: misaligned beamspot position is used.
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Figure 31: D0 vs. φ0 plot for the SVT tracks. The apparent beamspot position
as determined from our fits are fed to the SVT.
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17 Appendix B: Best fit values of the Fisher
Scalar

17.1 Table of best fit values for Fisher Scalar

The tables of values for the fit of the Fisher scalar for each B decay mode are
presented here. The Fisher scalar is binned by 18 and is fit with an 18th order
interpolating Lagrange polynomial. The fit parameters are labelled fbi since
they represent the fraction of signal in each bin of Fisher scalar. Due to a lack
of statistics in the extreme bins (different for each B mode) some of the fbis
are the same, these bins are forced to have the same value.

The results for the B± mode are presented first, please note that for this mode
fb0 = fb1 = fb2 and fb15 = fb16 = fb17, the table follows:

Parameter Best Fit value ± Error
fb0 0.3028 ± 0.0330
fb1 0.3028 ± 0.0330
fb2 0.3028 ± 0.0330
fb3 0.3878 ± 0.0219
fb4 0.3843 ± 0.0101
fb5 0.4097 ± 0.0046
fb6 0.5769 ± 0.0071
fb7 0.6368 ± 0.0088
fb8 0.6260 ± 0.0109
fb9 0.6686 ± 0.0129
fb10 0.7553 ± 0.0122
fb11 0.8402 ± 0.0111
fb12 0.8554 ± 0.0121
fb13 0.8323 ± 0.0189
fb14 0.8096 ± 0.0292
fb15 0.0714 ± 0.0836
fb16 0.7140 ± 0.0836
fb17 0.7140 ± 0.0836

For the B0 the results are presented here, for this mode we have fb1 = fb2 =
fb3 = fb4 = fb0 and fb15 = fb16 = fb17, the table follows:
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Parameter Best Fit value ± Error
fb0 -0.0005 ± 0.0972
fb1 -0.0005 ± 0.0972
fb2 -0.0005 ± 0.0972
fb3 -0.0005 ± 0.0972
fb4 -0.0005 ± 0.0972
fb5 0.9990 ± 0.0791
fb6 -0.0002 ± 0.0171
fb7 0.5578 ± 0.0496
fb8 0.5518 ± 0.0154
fb9 0.3172 ± 0.0042
fb10 0.5839 ± 0.0066
fb11 0.7002 ± 0.0099
fb12 0.8940 ± 0.0171
fb13 0.7663 ± 0.0452
fb14 0.9436 ± 0.0668
fb15 -0.9999 ± 0.0466
fb16 -0.9999 ± 0.0466
fb17 -0.9999 ± 0.0466
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